{"title":"视觉语言模型的补充提示学习","authors":"Rongfei Zeng, Zhipeng Yang, Ruiyun Yu, Yonggang Zhang","doi":"10.1007/s11263-025-02451-1","DOIUrl":null,"url":null,"abstract":"<p>Pre-trained vision-language models like CLIP have shown remarkable capabilities across various downstream tasks with well-tuned prompts. Advanced methods tune prompts by optimizing context while keeping the class name fixed, implicitly assuming that the class names in prompts are accurate and not missing. However, this assumption may be violated in numerous real-world scenarios, leading to potential performance degeneration or even failure of existing prompt learning methods. For example, an accurate class name for an image containing “Transformers” might be inaccurate because selecting a precise class name among numerous candidates is challenging. Moreover, assigning class names to some images may require specialized knowledge, resulting in indexing rather than semantic labels, e.g., Group 3 and Group 4 subtypes of medulloblastoma. To cope with the class-name missing issue, we propose a simple yet effective prompt learning approach, called Supplementary Optimization (SOp) for supplementing the missing class-related information. Specifically, SOp models the class names as learnable vectors while keeping the context fixed to learn prompts for downstream tasks. Extensive experiments across 18 public datasets demonstrate the efficacy of SOp when class names are missing. SOp can achieve performance comparable to that of the context optimization approach, even without using the prior information in the class names.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"45 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supplementary Prompt Learning for Vision-Language Models\",\"authors\":\"Rongfei Zeng, Zhipeng Yang, Ruiyun Yu, Yonggang Zhang\",\"doi\":\"10.1007/s11263-025-02451-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pre-trained vision-language models like CLIP have shown remarkable capabilities across various downstream tasks with well-tuned prompts. Advanced methods tune prompts by optimizing context while keeping the class name fixed, implicitly assuming that the class names in prompts are accurate and not missing. However, this assumption may be violated in numerous real-world scenarios, leading to potential performance degeneration or even failure of existing prompt learning methods. For example, an accurate class name for an image containing “Transformers” might be inaccurate because selecting a precise class name among numerous candidates is challenging. Moreover, assigning class names to some images may require specialized knowledge, resulting in indexing rather than semantic labels, e.g., Group 3 and Group 4 subtypes of medulloblastoma. To cope with the class-name missing issue, we propose a simple yet effective prompt learning approach, called Supplementary Optimization (SOp) for supplementing the missing class-related information. Specifically, SOp models the class names as learnable vectors while keeping the context fixed to learn prompts for downstream tasks. Extensive experiments across 18 public datasets demonstrate the efficacy of SOp when class names are missing. SOp can achieve performance comparable to that of the context optimization approach, even without using the prior information in the class names.</p>\",\"PeriodicalId\":13752,\"journal\":{\"name\":\"International Journal of Computer Vision\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11263-025-02451-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02451-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Supplementary Prompt Learning for Vision-Language Models
Pre-trained vision-language models like CLIP have shown remarkable capabilities across various downstream tasks with well-tuned prompts. Advanced methods tune prompts by optimizing context while keeping the class name fixed, implicitly assuming that the class names in prompts are accurate and not missing. However, this assumption may be violated in numerous real-world scenarios, leading to potential performance degeneration or even failure of existing prompt learning methods. For example, an accurate class name for an image containing “Transformers” might be inaccurate because selecting a precise class name among numerous candidates is challenging. Moreover, assigning class names to some images may require specialized knowledge, resulting in indexing rather than semantic labels, e.g., Group 3 and Group 4 subtypes of medulloblastoma. To cope with the class-name missing issue, we propose a simple yet effective prompt learning approach, called Supplementary Optimization (SOp) for supplementing the missing class-related information. Specifically, SOp models the class names as learnable vectors while keeping the context fixed to learn prompts for downstream tasks. Extensive experiments across 18 public datasets demonstrate the efficacy of SOp when class names are missing. SOp can achieve performance comparable to that of the context optimization approach, even without using the prior information in the class names.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.