Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes
{"title":"利用注入立体电子的分子图推进分子机器学习表征","authors":"Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes","doi":"10.1038/s42256-025-01031-9","DOIUrl":null,"url":null,"abstract":"<p>Molecular representation is a critical element in our understanding of the physical world and the foundation for modern molecular machine learning. Previous molecular machine learning models have used strings, fingerprints, global features and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a new approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects, enhancing expressivity and interpretability. Learning to predict the stereoelectronics-infused representation with a tailored double graph neural network workflow enables its application to any downstream molecular machine learning task without expensive quantum-chemical calculations. We show that the explicit addition of stereoelectronic information substantially improves the performance of message-passing two-dimensional machine learning models for molecular property prediction. We show that the learned representations trained on small molecules can accurately extrapolate to much larger molecular structures, yielding chemical insight into orbital interactions for previously intractable systems, such as entire proteins, opening new avenues of molecular design. Finally, we have developed a web application (simg.cheme.cmu.edu) where users can rapidly explore stereoelectronic information for their own molecular systems.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"15 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing molecular machine learning representations with stereoelectronics-infused molecular graphs\",\"authors\":\"Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes\",\"doi\":\"10.1038/s42256-025-01031-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molecular representation is a critical element in our understanding of the physical world and the foundation for modern molecular machine learning. Previous molecular machine learning models have used strings, fingerprints, global features and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a new approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects, enhancing expressivity and interpretability. Learning to predict the stereoelectronics-infused representation with a tailored double graph neural network workflow enables its application to any downstream molecular machine learning task without expensive quantum-chemical calculations. We show that the explicit addition of stereoelectronic information substantially improves the performance of message-passing two-dimensional machine learning models for molecular property prediction. We show that the learned representations trained on small molecules can accurately extrapolate to much larger molecular structures, yielding chemical insight into orbital interactions for previously intractable systems, such as entire proteins, opening new avenues of molecular design. Finally, we have developed a web application (simg.cheme.cmu.edu) where users can rapidly explore stereoelectronic information for their own molecular systems.</p>\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1038/s42256-025-01031-9\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01031-9","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advancing molecular machine learning representations with stereoelectronics-infused molecular graphs
Molecular representation is a critical element in our understanding of the physical world and the foundation for modern molecular machine learning. Previous molecular machine learning models have used strings, fingerprints, global features and simple molecular graphs that are inherently information-sparse representations. However, as the complexity of prediction tasks increases, the molecular representation needs to encode higher fidelity information. This work introduces a new approach to infusing quantum-chemical-rich information into molecular graphs via stereoelectronic effects, enhancing expressivity and interpretability. Learning to predict the stereoelectronics-infused representation with a tailored double graph neural network workflow enables its application to any downstream molecular machine learning task without expensive quantum-chemical calculations. We show that the explicit addition of stereoelectronic information substantially improves the performance of message-passing two-dimensional machine learning models for molecular property prediction. We show that the learned representations trained on small molecules can accurately extrapolate to much larger molecular structures, yielding chemical insight into orbital interactions for previously intractable systems, such as entire proteins, opening new avenues of molecular design. Finally, we have developed a web application (simg.cheme.cmu.edu) where users can rapidly explore stereoelectronic information for their own molecular systems.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.