利用肿瘤形态学特征增强肾细胞癌分期:模型开发和多来源验证

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Enyu Yuan, Yuntian Chen, Lei Ye, Ben He, ChunLei He, Junchao Ma, Ting Yang, Hao Zeng, Ling Yang, Jin Yao, Bin Song
{"title":"利用肿瘤形态学特征增强肾细胞癌分期:模型开发和多来源验证","authors":"Enyu Yuan, Yuntian Chen, Lei Ye, Ben He, ChunLei He, Junchao Ma, Ting Yang, Hao Zeng, Ling Yang, Jin Yao, Bin Song","doi":"10.1038/s41746-025-01723-x","DOIUrl":null,"url":null,"abstract":"<p>Preoperative detection of pT3a invasion in non-metastatic renal cell carcinoma (RCC) remains challenging with CT. This study developed and validated radiomic models using preoperative CT to identify pT3a invasions. Six models were trained and internally validated via nested cross-validation on 999 patients from one hospital. External validation included 313 patients from two hospitals and 204 patients from four TCIA datasets. A multi-reader multi-case study with seven radiologists evaluated the model’s incremental value. The morphology model achieved the highest internal AUC (0.867, 95% CI: 0.866–0.869) and maintained performance in external validations (AUC = 0.895 and 0.842). When used as a second reader, it significantly improved junior radiologists’ sensitivity and discrimination (AUC: 0.790 vs. 0.831, p &lt; 0.001) without compromising specificity. This study demonstrates that CT-based radiomic models, particularly the morphology model, can reliably detect pT3a invasion and enhance diagnostic accuracy for junior radiologists, offering potential clinical utility in preoperative staging.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"31 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced staging of renal cell carcinoma using tumor morphology features: model development and multi-source validation\",\"authors\":\"Enyu Yuan, Yuntian Chen, Lei Ye, Ben He, ChunLei He, Junchao Ma, Ting Yang, Hao Zeng, Ling Yang, Jin Yao, Bin Song\",\"doi\":\"10.1038/s41746-025-01723-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Preoperative detection of pT3a invasion in non-metastatic renal cell carcinoma (RCC) remains challenging with CT. This study developed and validated radiomic models using preoperative CT to identify pT3a invasions. Six models were trained and internally validated via nested cross-validation on 999 patients from one hospital. External validation included 313 patients from two hospitals and 204 patients from four TCIA datasets. A multi-reader multi-case study with seven radiologists evaluated the model’s incremental value. The morphology model achieved the highest internal AUC (0.867, 95% CI: 0.866–0.869) and maintained performance in external validations (AUC = 0.895 and 0.842). When used as a second reader, it significantly improved junior radiologists’ sensitivity and discrimination (AUC: 0.790 vs. 0.831, p &lt; 0.001) without compromising specificity. This study demonstrates that CT-based radiomic models, particularly the morphology model, can reliably detect pT3a invasion and enhance diagnostic accuracy for junior radiologists, offering potential clinical utility in preoperative staging.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01723-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01723-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

术前CT检测pT3a侵袭非转移性肾细胞癌(RCC)仍然具有挑战性。本研究开发并验证了术前CT放射学模型来识别pT3a侵袭。对6个模型进行了训练,并通过嵌套交叉验证对一家医院的999名患者进行了内部验证。外部验证包括来自两家医院的313名患者和来自四个TCIA数据集的204名患者。由7名放射科医生参与的多读者多案例研究评估了该模型的增量价值。形态学模型获得了最高的内部AUC (0.867, 95% CI: 0.866-0.869),并在外部验证中保持了良好的性能(AUC = 0.895和0.842)。当用作第二阅读器时,它显着提高了初级放射科医生的敏感性和辨别力(AUC: 0.790 vs. 0.831, p < 0.001),而不影响特异性。本研究表明,基于ct的放射组学模型,特别是形态学模型,可以可靠地检测pT3a侵袭,提高初级放射科医生的诊断准确性,在术前分期方面具有潜在的临床应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced staging of renal cell carcinoma using tumor morphology features: model development and multi-source validation

Enhanced staging of renal cell carcinoma using tumor morphology features: model development and multi-source validation

Preoperative detection of pT3a invasion in non-metastatic renal cell carcinoma (RCC) remains challenging with CT. This study developed and validated radiomic models using preoperative CT to identify pT3a invasions. Six models were trained and internally validated via nested cross-validation on 999 patients from one hospital. External validation included 313 patients from two hospitals and 204 patients from four TCIA datasets. A multi-reader multi-case study with seven radiologists evaluated the model’s incremental value. The morphology model achieved the highest internal AUC (0.867, 95% CI: 0.866–0.869) and maintained performance in external validations (AUC = 0.895 and 0.842). When used as a second reader, it significantly improved junior radiologists’ sensitivity and discrimination (AUC: 0.790 vs. 0.831, p < 0.001) without compromising specificity. This study demonstrates that CT-based radiomic models, particularly the morphology model, can reliably detect pT3a invasion and enhance diagnostic accuracy for junior radiologists, offering potential clinical utility in preoperative staging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信