Ying Yin, Yijun Shao, Phillip Ma, Qing Zeng-Treitler, Stuart J Nelson
{"title":"来自EHR数据的机器学习代码比人工分配的ICD代码更能预测硬结果。","authors":"Ying Yin, Yijun Shao, Phillip Ma, Qing Zeng-Treitler, Stuart J Nelson","doi":"10.3390/make7020036","DOIUrl":null,"url":null,"abstract":"<p><p>We used machine learning (ML) to characterize 894,154 medical records of outpatient visits from the Veterans Administration Central Data Warehouse (VA CDW) by the likelihood of assignment of 200 International Classification of Diseases (ICD) code blocks. Using four different predictive models, we found the ML-derived predictions for the code blocks were consistently more effective in predicting death or 90-day rehospitalization than the assigned code block in the record. We reviewed records of ICD chapter assignments. The review revealed that the ML-predicted chapter assignments were consistently better than those humanly assigned. Impact factor analysis, a method of explanation of AI findings that was developed in our group, demonstrated little effect on any one assigned ICD code block but a marked impact on the ML-derived code blocks of kidney disease as well as several other morbidities. In this study, machine learning was much better than human code assignment at predicting the relatively rare outcomes of death or rehospitalization. Future work will address generalizability using other datasets, as well as addressing coding that is more nuanced than that of the categorization provided by code blocks.</p>","PeriodicalId":93033,"journal":{"name":"Machine learning and knowledge extraction","volume":"7 2","pages":"36"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093355/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine-Learned Codes from EHR Data Predict Hard Outcomes Better than Human-Assigned ICD Codes.\",\"authors\":\"Ying Yin, Yijun Shao, Phillip Ma, Qing Zeng-Treitler, Stuart J Nelson\",\"doi\":\"10.3390/make7020036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We used machine learning (ML) to characterize 894,154 medical records of outpatient visits from the Veterans Administration Central Data Warehouse (VA CDW) by the likelihood of assignment of 200 International Classification of Diseases (ICD) code blocks. Using four different predictive models, we found the ML-derived predictions for the code blocks were consistently more effective in predicting death or 90-day rehospitalization than the assigned code block in the record. We reviewed records of ICD chapter assignments. The review revealed that the ML-predicted chapter assignments were consistently better than those humanly assigned. Impact factor analysis, a method of explanation of AI findings that was developed in our group, demonstrated little effect on any one assigned ICD code block but a marked impact on the ML-derived code blocks of kidney disease as well as several other morbidities. In this study, machine learning was much better than human code assignment at predicting the relatively rare outcomes of death or rehospitalization. Future work will address generalizability using other datasets, as well as addressing coding that is more nuanced than that of the categorization provided by code blocks.</p>\",\"PeriodicalId\":93033,\"journal\":{\"name\":\"Machine learning and knowledge extraction\",\"volume\":\"7 2\",\"pages\":\"36\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093355/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine learning and knowledge extraction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/make7020036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning and knowledge extraction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/make7020036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine-Learned Codes from EHR Data Predict Hard Outcomes Better than Human-Assigned ICD Codes.
We used machine learning (ML) to characterize 894,154 medical records of outpatient visits from the Veterans Administration Central Data Warehouse (VA CDW) by the likelihood of assignment of 200 International Classification of Diseases (ICD) code blocks. Using four different predictive models, we found the ML-derived predictions for the code blocks were consistently more effective in predicting death or 90-day rehospitalization than the assigned code block in the record. We reviewed records of ICD chapter assignments. The review revealed that the ML-predicted chapter assignments were consistently better than those humanly assigned. Impact factor analysis, a method of explanation of AI findings that was developed in our group, demonstrated little effect on any one assigned ICD code block but a marked impact on the ML-derived code blocks of kidney disease as well as several other morbidities. In this study, machine learning was much better than human code assignment at predicting the relatively rare outcomes of death or rehospitalization. Future work will address generalizability using other datasets, as well as addressing coding that is more nuanced than that of the categorization provided by code blocks.