使用人工智能驱动的Gleason分级的合成数据减轻前列腺癌诊断的偏倚。

IF 6.8 1区 医学 Q1 ONCOLOGY
Derek J Van Booven, Cheng-Bang Chen, Oleksandr N Kryvenko, Sanoj Punnen, Victor Sandoval, Sheetal Malpani, Ahmed Noman, Farhan Ismael, Yujie Wang, Rehana Qureshi, Joshua M Hare, Himanshu Arora
{"title":"使用人工智能驱动的Gleason分级的合成数据减轻前列腺癌诊断的偏倚。","authors":"Derek J Van Booven, Cheng-Bang Chen, Oleksandr N Kryvenko, Sanoj Punnen, Victor Sandoval, Sheetal Malpani, Ahmed Noman, Farhan Ismael, Yujie Wang, Rehana Qureshi, Joshua M Hare, Himanshu Arora","doi":"10.1038/s41698-025-00934-5","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, with Gleason grading critical for prognosis and treatment decisions. Machine learning (ML) models offer potential for automated grading but are limited by dataset biases, staining variability, and data scarcity, reducing their generalizability. This study employs generative adversarial networks (GANs) to generate high-quality synthetic histopathological images to address these challenges. A conditional GAN (dcGAN) was developed and validated using expert pathologist review and Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA), achieving 80% diagnostic quality approval. A convolutional neural network (EfficientNet) was trained on original and synthetic images and validated across TCGA, PANDA Challenge, and MAST trial datasets. Integrating synthetic images improved classification accuracy for Gleason 3 (26%, p = 0.0010), Gleason 4 (15%, p = 0.0274), and Gleason 5 (32%, p < 0.0001), with sensitivity and specificity reaching 81% and 92%, respectively. This study demonstrates that synthetic data significantly enhances ML-based Gleason grading accuracy and improves reproducibility, providing a scalable AI-driven solution for precision oncology.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"151"},"PeriodicalIF":6.8000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098719/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mitigating bias in prostate cancer diagnosis using synthetic data for improved AI driven Gleason grading.\",\"authors\":\"Derek J Van Booven, Cheng-Bang Chen, Oleksandr N Kryvenko, Sanoj Punnen, Victor Sandoval, Sheetal Malpani, Ahmed Noman, Farhan Ismael, Yujie Wang, Rehana Qureshi, Joshua M Hare, Himanshu Arora\",\"doi\":\"10.1038/s41698-025-00934-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, with Gleason grading critical for prognosis and treatment decisions. Machine learning (ML) models offer potential for automated grading but are limited by dataset biases, staining variability, and data scarcity, reducing their generalizability. This study employs generative adversarial networks (GANs) to generate high-quality synthetic histopathological images to address these challenges. A conditional GAN (dcGAN) was developed and validated using expert pathologist review and Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA), achieving 80% diagnostic quality approval. A convolutional neural network (EfficientNet) was trained on original and synthetic images and validated across TCGA, PANDA Challenge, and MAST trial datasets. Integrating synthetic images improved classification accuracy for Gleason 3 (26%, p = 0.0010), Gleason 4 (15%, p = 0.0274), and Gleason 5 (32%, p < 0.0001), with sensitivity and specificity reaching 81% and 92%, respectively. This study demonstrates that synthetic data significantly enhances ML-based Gleason grading accuracy and improves reproducibility, providing a scalable AI-driven solution for precision oncology.</p>\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\"9 1\",\"pages\":\"151\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41698-025-00934-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00934-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌(PCa)是男性癌症相关死亡的主要原因,Gleason分级对预后和治疗决策至关重要。机器学习(ML)模型提供了自动评分的潜力,但受到数据集偏差、染色可变性和数据稀缺性的限制,降低了它们的泛化性。本研究采用生成对抗网络(GANs)来生成高质量的合成组织病理学图像来解决这些挑战。通过专家病理学家评审和空间异质性复发量化分析(SHRQA),开发并验证了条件GAN (dcGAN),达到80%的诊断质量认可。卷积神经网络(effentnet)在原始和合成图像上进行了训练,并在TCGA、PANDA Challenge和MAST试验数据集上进行了验证。整合合成图像提高了Gleason 3 (26%, p = 0.0010)、Gleason 4 (15%, p = 0.0274)和Gleason 5 (32%, p = 0.0274)的分类准确率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating bias in prostate cancer diagnosis using synthetic data for improved AI driven Gleason grading.

Prostate cancer (PCa) is a leading cause of cancer-related mortality in men, with Gleason grading critical for prognosis and treatment decisions. Machine learning (ML) models offer potential for automated grading but are limited by dataset biases, staining variability, and data scarcity, reducing their generalizability. This study employs generative adversarial networks (GANs) to generate high-quality synthetic histopathological images to address these challenges. A conditional GAN (dcGAN) was developed and validated using expert pathologist review and Spatial Heterogeneous Recurrence Quantification Analysis (SHRQA), achieving 80% diagnostic quality approval. A convolutional neural network (EfficientNet) was trained on original and synthetic images and validated across TCGA, PANDA Challenge, and MAST trial datasets. Integrating synthetic images improved classification accuracy for Gleason 3 (26%, p = 0.0010), Gleason 4 (15%, p = 0.0274), and Gleason 5 (32%, p < 0.0001), with sensitivity and specificity reaching 81% and 92%, respectively. This study demonstrates that synthetic data significantly enhances ML-based Gleason grading accuracy and improves reproducibility, providing a scalable AI-driven solution for precision oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信