Sultana Mohammed Al Zubaidi, Muhammad Ibtisam Nasar, Richard A Notebaart, Markus Ralser, Mohammad Tauqeer Alam
{"title":"酶激活网络揭示了代谢途径之间广泛的调控串扰。","authors":"Sultana Mohammed Al Zubaidi, Muhammad Ibtisam Nasar, Richard A Notebaart, Markus Ralser, Mohammad Tauqeer Alam","doi":"10.1038/s44320-025-00111-7","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme activation by cellular metabolites plays a pivotal role in regulating metabolic processes. Nevertheless, our comprehension of such activation events on a global network scale remains incomplete. In this study, we conducted a comprehensive investigation into the optimization of cell-intrinsic activation interactions using Saccharomyces cerevisiae metabolic network as the basis of the analysis. To achieve this, we integrated a genome-scale metabolic model with cross-species enzyme kinetic data sourced from the BRENDA database, and to use this model as a basis to estimate the distribution of enzyme activators throughout the cellular network. Our findings indicate that the vast majority of biochemical pathways encompass enzyme activators, frequently originating from disparate pathways, thus revealing extensive regulatory crosstalk between metabolic pathways. Notably, activators have short pathway lengths, indicating they are activated quickly upon nutrient shifts, and in most instances, these activators target key enzymatic reactions to facilitate downstream metabolic processes. Interestingly, highly activated enzymes are substantially enriched with non-essential enzymes compared to their essential counterparts. This observation suggests that cells employ enzyme activators to finely regulate secondary metabolic pathways that are only required under specific conditions. Conversely, the activator metabolites themselves are more likely to be essential components, and their activation levels surpass those of non-essential activators. In summary, our study unveils the widespread importance of enzymatic activators and suggests that feed-forward activation of conditional metabolic pathways through essential metabolites mediates metabolic plasticity.</p>","PeriodicalId":18906,"journal":{"name":"Molecular Systems Biology","volume":" ","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An enzyme activation network reveals extensive regulatory crosstalk between metabolic pathways.\",\"authors\":\"Sultana Mohammed Al Zubaidi, Muhammad Ibtisam Nasar, Richard A Notebaart, Markus Ralser, Mohammad Tauqeer Alam\",\"doi\":\"10.1038/s44320-025-00111-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzyme activation by cellular metabolites plays a pivotal role in regulating metabolic processes. Nevertheless, our comprehension of such activation events on a global network scale remains incomplete. In this study, we conducted a comprehensive investigation into the optimization of cell-intrinsic activation interactions using Saccharomyces cerevisiae metabolic network as the basis of the analysis. To achieve this, we integrated a genome-scale metabolic model with cross-species enzyme kinetic data sourced from the BRENDA database, and to use this model as a basis to estimate the distribution of enzyme activators throughout the cellular network. Our findings indicate that the vast majority of biochemical pathways encompass enzyme activators, frequently originating from disparate pathways, thus revealing extensive regulatory crosstalk between metabolic pathways. Notably, activators have short pathway lengths, indicating they are activated quickly upon nutrient shifts, and in most instances, these activators target key enzymatic reactions to facilitate downstream metabolic processes. Interestingly, highly activated enzymes are substantially enriched with non-essential enzymes compared to their essential counterparts. This observation suggests that cells employ enzyme activators to finely regulate secondary metabolic pathways that are only required under specific conditions. Conversely, the activator metabolites themselves are more likely to be essential components, and their activation levels surpass those of non-essential activators. In summary, our study unveils the widespread importance of enzymatic activators and suggests that feed-forward activation of conditional metabolic pathways through essential metabolites mediates metabolic plasticity.</p>\",\"PeriodicalId\":18906,\"journal\":{\"name\":\"Molecular Systems Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44320-025-00111-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44320-025-00111-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An enzyme activation network reveals extensive regulatory crosstalk between metabolic pathways.
Enzyme activation by cellular metabolites plays a pivotal role in regulating metabolic processes. Nevertheless, our comprehension of such activation events on a global network scale remains incomplete. In this study, we conducted a comprehensive investigation into the optimization of cell-intrinsic activation interactions using Saccharomyces cerevisiae metabolic network as the basis of the analysis. To achieve this, we integrated a genome-scale metabolic model with cross-species enzyme kinetic data sourced from the BRENDA database, and to use this model as a basis to estimate the distribution of enzyme activators throughout the cellular network. Our findings indicate that the vast majority of biochemical pathways encompass enzyme activators, frequently originating from disparate pathways, thus revealing extensive regulatory crosstalk between metabolic pathways. Notably, activators have short pathway lengths, indicating they are activated quickly upon nutrient shifts, and in most instances, these activators target key enzymatic reactions to facilitate downstream metabolic processes. Interestingly, highly activated enzymes are substantially enriched with non-essential enzymes compared to their essential counterparts. This observation suggests that cells employ enzyme activators to finely regulate secondary metabolic pathways that are only required under specific conditions. Conversely, the activator metabolites themselves are more likely to be essential components, and their activation levels surpass those of non-essential activators. In summary, our study unveils the widespread importance of enzymatic activators and suggests that feed-forward activation of conditional metabolic pathways through essential metabolites mediates metabolic plasticity.
期刊介绍:
Systems biology is a field that aims to understand complex biological systems by studying their components and how they interact. It is an integrative discipline that seeks to explain the properties and behavior of these systems.
Molecular Systems Biology is a scholarly journal that publishes top-notch research in the areas of systems biology, synthetic biology, and systems medicine. It is an open access journal, meaning that its content is freely available to readers, and it is peer-reviewed to ensure the quality of the published work.