Md Samsuddin Ansari , Muhammad Zohib , Meera Kumari , Vikash Yadav , Ravi Kant Pal , Sarita Tripathi , Anupam Jain , Bichitra Kumar Biswal , Ashish Arora
{"title":"结核分枝杆菌H37Rv PadR家族蛋白Rv0047c的结构与生物物理特性","authors":"Md Samsuddin Ansari , Muhammad Zohib , Meera Kumari , Vikash Yadav , Ravi Kant Pal , Sarita Tripathi , Anupam Jain , Bichitra Kumar Biswal , Ashish Arora","doi":"10.1016/j.jsb.2025.108211","DOIUrl":null,"url":null,"abstract":"<div><div>The members of the PadR family of transcriptional regulators are important for cell survival in toxic environments and play an important role in detoxification, pathogenicity, and multi-drug resistance. Rv0047c of <em>Mycobacterium tuberculosis</em> H37Rv is annotated as a PadR family protein. We have characterized the stability and structure of Rv0047c. Rv0047c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 55.3 °C. The crystal structure of Rv0047c was determined at a resolution of 3.15 Å. The structure indicates the biological unit to be a dimer with each monomer having a characteristic N-terminal winged-helix-turn-helix DNA binding domain and a C-terminal dimerization domain. The N-terminal domain is composed of four helices, α1, α2, α3, and α4 and two beta strands β1 and β2. The C-terminal dimerization domain (CTD) consists two long helices α6 and α7. The two domains are connected by helix α5. A short helical turn (helix αa, residue 89–92), leads to compaction of the α4-α5 loop. Rv0047c exhibits specificity in binding to an upstream region having an inverted repeat sequence. This binding is dependent upon Y18 and Y40 residue of Rv0047c, which are highly conserved among the PadR family. Overall, our results suggest a transcription regulatory role for Rv0047c, similar to other PadR family proteins.</div></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":"217 2","pages":"Article 108211"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural and biophysical characterization of PadR family protein Rv0047c of Mycobacterium tuberculosis H37Rv\",\"authors\":\"Md Samsuddin Ansari , Muhammad Zohib , Meera Kumari , Vikash Yadav , Ravi Kant Pal , Sarita Tripathi , Anupam Jain , Bichitra Kumar Biswal , Ashish Arora\",\"doi\":\"10.1016/j.jsb.2025.108211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The members of the PadR family of transcriptional regulators are important for cell survival in toxic environments and play an important role in detoxification, pathogenicity, and multi-drug resistance. Rv0047c of <em>Mycobacterium tuberculosis</em> H37Rv is annotated as a PadR family protein. We have characterized the stability and structure of Rv0047c. Rv0047c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 55.3 °C. The crystal structure of Rv0047c was determined at a resolution of 3.15 Å. The structure indicates the biological unit to be a dimer with each monomer having a characteristic N-terminal winged-helix-turn-helix DNA binding domain and a C-terminal dimerization domain. The N-terminal domain is composed of four helices, α1, α2, α3, and α4 and two beta strands β1 and β2. The C-terminal dimerization domain (CTD) consists two long helices α6 and α7. The two domains are connected by helix α5. A short helical turn (helix αa, residue 89–92), leads to compaction of the α4-α5 loop. Rv0047c exhibits specificity in binding to an upstream region having an inverted repeat sequence. This binding is dependent upon Y18 and Y40 residue of Rv0047c, which are highly conserved among the PadR family. Overall, our results suggest a transcription regulatory role for Rv0047c, similar to other PadR family proteins.</div></div>\",\"PeriodicalId\":17074,\"journal\":{\"name\":\"Journal of structural biology\",\"volume\":\"217 2\",\"pages\":\"Article 108211\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047847725000462\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847725000462","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Structural and biophysical characterization of PadR family protein Rv0047c of Mycobacterium tuberculosis H37Rv
The members of the PadR family of transcriptional regulators are important for cell survival in toxic environments and play an important role in detoxification, pathogenicity, and multi-drug resistance. Rv0047c of Mycobacterium tuberculosis H37Rv is annotated as a PadR family protein. We have characterized the stability and structure of Rv0047c. Rv0047c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 55.3 °C. The crystal structure of Rv0047c was determined at a resolution of 3.15 Å. The structure indicates the biological unit to be a dimer with each monomer having a characteristic N-terminal winged-helix-turn-helix DNA binding domain and a C-terminal dimerization domain. The N-terminal domain is composed of four helices, α1, α2, α3, and α4 and two beta strands β1 and β2. The C-terminal dimerization domain (CTD) consists two long helices α6 and α7. The two domains are connected by helix α5. A short helical turn (helix αa, residue 89–92), leads to compaction of the α4-α5 loop. Rv0047c exhibits specificity in binding to an upstream region having an inverted repeat sequence. This binding is dependent upon Y18 and Y40 residue of Rv0047c, which are highly conserved among the PadR family. Overall, our results suggest a transcription regulatory role for Rv0047c, similar to other PadR family proteins.
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure