{"title":"白细胞介素33促进糖尿病小鼠肝窦内皮细胞功能障碍和肝纤维化。","authors":"Huimin Chen, Chao Gao, Li Mo, Xingzhu Yin, Li Chen, Bangfu Wu, Ying Zhao, Xueer Cheng, Chanhua Liang, Bichao Xu, Dongyan Li, Yanyan Li, Ping Yao, Yuhan Tang","doi":"10.4093/dmj.2024.0532","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interleukin 33 (IL33) drives liver fibrosis, and individuals with type 2 diabetes mellitus are more likely advanced to liver fibrosis. However, the role of IL33 in diabetic liver fibrosis remains unclear, prompting our investigation.</p><p><strong>Methods: </strong>We developed a diabetes model in wild-type, IL33-/-, and suppression of tumorigenicity 2 (ST2-/-, IL33 receptor) mice. Furthermore, wild-type diabetic mice were injected with IL33 neutralizing antibody (αIL33). We also co-cultured human liver endothelial cells and human hepatic stellate cells to identify the role of IL33 in high palmitic acid and high glucose conditions.</p><p><strong>Results: </strong>Hepatic collagen deposition was increased in diabetic mice, which was alleviated by IL33 knockout, ST2 knockout, or administration of αIL33. Also, αIL33 treatment blunted liver sinusoidal endothelial cell (LSEC) dysfunction and inflammation during diabetic liver fibrosis progression. Recombinant IL33 (rIL33) treatment aggravated autophagy disruption in the presence of palm acid and high glucose in LSECs, which was blunted by autophagy agonist rapamycin administration and ERK/MAPK inhibitor PD98059 treatment. Hepatic stellate cell line LX-2 co-cultured with rIL33-pretreated LSECs displayed augmented activation, which was also attenuated by rapamycin or PD98059 pretreated.</p><p><strong>Conclusion: </strong>IL33 drives LSEC dysfunction and promotes diabetic hepatic fibrosis, thus a potential therapeutic target for diabetic liver fibrosis.</p>","PeriodicalId":11153,"journal":{"name":"Diabetes & Metabolism Journal","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interleukin 33 Promotes Liver Sinusoidal Endothelial Cell Dysfunction and Hepatic Fibrosis in Diabetic Mice.\",\"authors\":\"Huimin Chen, Chao Gao, Li Mo, Xingzhu Yin, Li Chen, Bangfu Wu, Ying Zhao, Xueer Cheng, Chanhua Liang, Bichao Xu, Dongyan Li, Yanyan Li, Ping Yao, Yuhan Tang\",\"doi\":\"10.4093/dmj.2024.0532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Interleukin 33 (IL33) drives liver fibrosis, and individuals with type 2 diabetes mellitus are more likely advanced to liver fibrosis. However, the role of IL33 in diabetic liver fibrosis remains unclear, prompting our investigation.</p><p><strong>Methods: </strong>We developed a diabetes model in wild-type, IL33-/-, and suppression of tumorigenicity 2 (ST2-/-, IL33 receptor) mice. Furthermore, wild-type diabetic mice were injected with IL33 neutralizing antibody (αIL33). We also co-cultured human liver endothelial cells and human hepatic stellate cells to identify the role of IL33 in high palmitic acid and high glucose conditions.</p><p><strong>Results: </strong>Hepatic collagen deposition was increased in diabetic mice, which was alleviated by IL33 knockout, ST2 knockout, or administration of αIL33. Also, αIL33 treatment blunted liver sinusoidal endothelial cell (LSEC) dysfunction and inflammation during diabetic liver fibrosis progression. Recombinant IL33 (rIL33) treatment aggravated autophagy disruption in the presence of palm acid and high glucose in LSECs, which was blunted by autophagy agonist rapamycin administration and ERK/MAPK inhibitor PD98059 treatment. Hepatic stellate cell line LX-2 co-cultured with rIL33-pretreated LSECs displayed augmented activation, which was also attenuated by rapamycin or PD98059 pretreated.</p><p><strong>Conclusion: </strong>IL33 drives LSEC dysfunction and promotes diabetic hepatic fibrosis, thus a potential therapeutic target for diabetic liver fibrosis.</p>\",\"PeriodicalId\":11153,\"journal\":{\"name\":\"Diabetes & Metabolism Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes & Metabolism Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4093/dmj.2024.0532\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes & Metabolism Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4093/dmj.2024.0532","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Interleukin 33 Promotes Liver Sinusoidal Endothelial Cell Dysfunction and Hepatic Fibrosis in Diabetic Mice.
Background: Interleukin 33 (IL33) drives liver fibrosis, and individuals with type 2 diabetes mellitus are more likely advanced to liver fibrosis. However, the role of IL33 in diabetic liver fibrosis remains unclear, prompting our investigation.
Methods: We developed a diabetes model in wild-type, IL33-/-, and suppression of tumorigenicity 2 (ST2-/-, IL33 receptor) mice. Furthermore, wild-type diabetic mice were injected with IL33 neutralizing antibody (αIL33). We also co-cultured human liver endothelial cells and human hepatic stellate cells to identify the role of IL33 in high palmitic acid and high glucose conditions.
Results: Hepatic collagen deposition was increased in diabetic mice, which was alleviated by IL33 knockout, ST2 knockout, or administration of αIL33. Also, αIL33 treatment blunted liver sinusoidal endothelial cell (LSEC) dysfunction and inflammation during diabetic liver fibrosis progression. Recombinant IL33 (rIL33) treatment aggravated autophagy disruption in the presence of palm acid and high glucose in LSECs, which was blunted by autophagy agonist rapamycin administration and ERK/MAPK inhibitor PD98059 treatment. Hepatic stellate cell line LX-2 co-cultured with rIL33-pretreated LSECs displayed augmented activation, which was also attenuated by rapamycin or PD98059 pretreated.
Conclusion: IL33 drives LSEC dysfunction and promotes diabetic hepatic fibrosis, thus a potential therapeutic target for diabetic liver fibrosis.
期刊介绍:
The aims of the Diabetes & Metabolism Journal are to contribute to the cure of and education about diabetes mellitus, and the advancement of diabetology through the sharing of scientific information on the latest developments in diabetology among members of the Korean Diabetes Association and other international societies.
The Journal publishes articles on basic and clinical studies, focusing on areas such as metabolism, epidemiology, pathogenesis, complications, and treatments relevant to diabetes mellitus. It also publishes articles covering obesity and cardiovascular disease. Articles on translational research and timely issues including ubiquitous care or new technology in the management of diabetes and metabolic disorders are welcome. In addition, genome research, meta-analysis, and randomized controlled studies are welcome for publication.
The editorial board invites articles from international research or clinical study groups. Publication is determined by the editors and peer reviewers, who are experts in their specific fields of diabetology.