{"title":"mKmer:一种无偏K-mer包埋微生物组单微生物RNA测序数据。","authors":"Fangyu Mo, Qinghong Qian, Xiaolin Lu, Dihuai Zheng, Wenjie Cai, Jie Yao, Hongyu Chen, Yujie Huang, Xiang Zhang, Sanling Wu, Yifei Shen, Yinqi Bai, Yongcheng Wang, Weiqin Jiang, Longjiang Fan","doi":"10.1093/bib/bbaf227","DOIUrl":null,"url":null,"abstract":"<p><p>The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100620/pdf/","citationCount":"0","resultStr":"{\"title\":\"mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data.\",\"authors\":\"Fangyu Mo, Qinghong Qian, Xiaolin Lu, Dihuai Zheng, Wenjie Cai, Jie Yao, Hongyu Chen, Yujie Huang, Xiang Zhang, Sanling Wu, Yifei Shen, Yinqi Bai, Yongcheng Wang, Weiqin Jiang, Longjiang Fan\",\"doi\":\"10.1093/bib/bbaf227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100620/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf227\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf227","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
mKmer: an unbiased K-mer embedding of microbiomic single-microbe RNA sequencing data.
The advanced single-microbe RNA sequencing (smRNA-seq) technique addresses the pressing need to understand the complexity and diversity of microbial communities, as well as the distinct microbial states defined by different gene expression profiles. Current analyses of smRNA-seq data heavily rely on the integrity of reference genomes within the queried microbiota. However, establishing a comprehensive collection of microbial reference genomes or gene sets remains a significant challenge for most real-world microbial ecosystems. Here, we developed an unbiased embedding algorithm utilizing K-mer signatures, named mKmer, which bypasses gene or genome alignment to enable species identification for individual microbes and downstream functional enrichment analysis. By substituting gene features in the canonical cell-by-gene matrix with highly conserved K-mers, we demonstrate that mKmer outperforms gene-based methods in clustering and motif inference tasks using benchmark datasets from crop soil and human gut microbiomes. Our method provides a reference genome-free analytical framework for advancing smRNA-seq studies.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.