具有非局部相互作用的一维可压缩欧拉方程的无粘极限全局解

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
José A. Carrillo, Gui-Qiang G. Chen, Difan Yuan, Ewelina Zatorska
{"title":"具有非局部相互作用的一维可压缩欧拉方程的无粘极限全局解","authors":"José A. Carrillo,&nbsp;Gui-Qiang G. Chen,&nbsp;Difan Yuan,&nbsp;Ewelina Zatorska","doi":"10.1007/s00205-025-02097-w","DOIUrl":null,"url":null,"abstract":"<div><p>We are concerned with the global existence of finite-energy entropy solutions of the one-dimensional compressible Euler equations with (possibly) damping, alignment forces, and the nonlocal interactions of Newtonian repulsion and quadratic confinement. Both the polytropic gas law and the general gas law are analyzed. This is achieved by constructing a sequence of solutions of the one-dimensional compressible Navier–Stokes-type equations with density-dependent viscosity on expanding intervals with the stress-free boundary condition and then taking the vanishing viscosity limit. The main difficulties in this paper arise from the appearance of the nonlocal terms. In particular, some uniform higher moment estimates of the solutions for the compressible Navier–Stokes equations on the expanding intervals with stress-free boundary condition are obtained by careful design of the approximate initial data.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02097-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Global Solutions of the One-Dimensional Compressible Euler Equations with Nonlocal Interactions via the Inviscid Limit\",\"authors\":\"José A. Carrillo,&nbsp;Gui-Qiang G. Chen,&nbsp;Difan Yuan,&nbsp;Ewelina Zatorska\",\"doi\":\"10.1007/s00205-025-02097-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We are concerned with the global existence of finite-energy entropy solutions of the one-dimensional compressible Euler equations with (possibly) damping, alignment forces, and the nonlocal interactions of Newtonian repulsion and quadratic confinement. Both the polytropic gas law and the general gas law are analyzed. This is achieved by constructing a sequence of solutions of the one-dimensional compressible Navier–Stokes-type equations with density-dependent viscosity on expanding intervals with the stress-free boundary condition and then taking the vanishing viscosity limit. The main difficulties in this paper arise from the appearance of the nonlocal terms. In particular, some uniform higher moment estimates of the solutions for the compressible Navier–Stokes equations on the expanding intervals with stress-free boundary condition are obtained by careful design of the approximate initial data.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02097-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02097-w\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02097-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们关注一维可压缩欧拉方程的有限能量熵解的整体存在性,(可能)具有阻尼,对准力,以及牛顿斥力和二次约束的非局部相互作用。对多向气体定律和一般气体定律进行了分析。这是通过在无应力边界条件下构造具有密度依赖黏度的一维可压缩navier - stokes型方程在扩展区间上的一系列解,然后取黏度消失极限来实现的。本文的主要困难来自于非局部术语的出现。特别地,通过对近似初始数据的精心设计,得到了具有无应力边界条件的可压缩Navier-Stokes方程在扩展区间上解的一致高矩估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Solutions of the One-Dimensional Compressible Euler Equations with Nonlocal Interactions via the Inviscid Limit

We are concerned with the global existence of finite-energy entropy solutions of the one-dimensional compressible Euler equations with (possibly) damping, alignment forces, and the nonlocal interactions of Newtonian repulsion and quadratic confinement. Both the polytropic gas law and the general gas law are analyzed. This is achieved by constructing a sequence of solutions of the one-dimensional compressible Navier–Stokes-type equations with density-dependent viscosity on expanding intervals with the stress-free boundary condition and then taking the vanishing viscosity limit. The main difficulties in this paper arise from the appearance of the nonlocal terms. In particular, some uniform higher moment estimates of the solutions for the compressible Navier–Stokes equations on the expanding intervals with stress-free boundary condition are obtained by careful design of the approximate initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信