通过室内外桥接实现无参考的3D WiFi AP定位

Tatsuya Amano;Hirozumi Yamaguchi;Teruo Higashino
{"title":"通过室内外桥接实现无参考的3D WiFi AP定位","authors":"Tatsuya Amano;Hirozumi Yamaguchi;Teruo Higashino","doi":"10.1109/OJCS.2025.3566774","DOIUrl":null,"url":null,"abstract":"WiFi access point (AP) localization is essential for wireless infrastructure management and location-based services. While deep learning approaches have shown promising accuracy improvements, they require extensive training data with precise coordinates, making large-scale deployment impractical. Traditional localization techniques also rely heavily on indoor reference points (RPs), resulting in costly and labor-intensive deployments. We present WiSight, a novel framework that eliminates the need for indoor RPs by leveraging GPS-tagged outdoor RSS measurements and 3D building geometry, anchoring the indoor reference frame to the global coordinate system using GPS-tagged exterior points. WiSight first identifies virtual anchor positions on building exteriors through outdoor signal propagation modeling, then reconstructs indoor AP configurations using unlabeled RSS measurement pairs and multidimensional scaling. Extensive evaluation across multiple buildings demonstrates that WiSight achieves an average 3D AP localization error of 7.1 m (median: 6.8 m), reducing error by 59% compared to an opportunistic GPS-based approach. In office environments, WiSight attains 9.6 m error (median: 8.5 m)—22% lower than the state-of-the-art deep learning-based method, while achieving 82% floor-level accuracy without requiring any indoor RPs or training data.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"688-700"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982448","citationCount":"0","resultStr":"{\"title\":\"Reference-Free 3D WiFi AP Localization by Outdoor-to-Indoor Bridging\",\"authors\":\"Tatsuya Amano;Hirozumi Yamaguchi;Teruo Higashino\",\"doi\":\"10.1109/OJCS.2025.3566774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"WiFi access point (AP) localization is essential for wireless infrastructure management and location-based services. While deep learning approaches have shown promising accuracy improvements, they require extensive training data with precise coordinates, making large-scale deployment impractical. Traditional localization techniques also rely heavily on indoor reference points (RPs), resulting in costly and labor-intensive deployments. We present WiSight, a novel framework that eliminates the need for indoor RPs by leveraging GPS-tagged outdoor RSS measurements and 3D building geometry, anchoring the indoor reference frame to the global coordinate system using GPS-tagged exterior points. WiSight first identifies virtual anchor positions on building exteriors through outdoor signal propagation modeling, then reconstructs indoor AP configurations using unlabeled RSS measurement pairs and multidimensional scaling. Extensive evaluation across multiple buildings demonstrates that WiSight achieves an average 3D AP localization error of 7.1 m (median: 6.8 m), reducing error by 59% compared to an opportunistic GPS-based approach. In office environments, WiSight attains 9.6 m error (median: 8.5 m)—22% lower than the state-of-the-art deep learning-based method, while achieving 82% floor-level accuracy without requiring any indoor RPs or training data.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"6 \",\"pages\":\"688-700\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982448\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10982448/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10982448/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

WiFi接入点(AP)本地化对于无线基础设施管理和基于位置的服务至关重要。虽然深度学习方法已经显示出有希望提高准确性,但它们需要大量具有精确坐标的训练数据,这使得大规模部署变得不切实际。传统的定位技术还严重依赖于室内参考点(rp),导致部署成本高、劳动密集。我们提出了WiSight,这是一种新的框架,通过利用gps标记的室外RSS测量和3D建筑几何,将室内参考框架锚定到使用gps标记的外部点的全球坐标系中,从而消除了对室内RPs的需求。WiSight首先通过室外信号传播建模识别建筑物外部的虚拟锚点位置,然后使用未标记的RSS测量对和多维缩放重建室内AP配置。对多个建筑物的广泛评估表明,WiSight实现了平均7.1米的3D AP定位误差(中位数:6.8米),与基于gps的方法相比,误差减少了59%。在办公环境中,WiSight实现了9.6米的误差(中位数:8.5米),比最先进的基于深度学习的方法低22%,同时在不需要任何室内rp或训练数据的情况下实现了82%的地板精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reference-Free 3D WiFi AP Localization by Outdoor-to-Indoor Bridging
WiFi access point (AP) localization is essential for wireless infrastructure management and location-based services. While deep learning approaches have shown promising accuracy improvements, they require extensive training data with precise coordinates, making large-scale deployment impractical. Traditional localization techniques also rely heavily on indoor reference points (RPs), resulting in costly and labor-intensive deployments. We present WiSight, a novel framework that eliminates the need for indoor RPs by leveraging GPS-tagged outdoor RSS measurements and 3D building geometry, anchoring the indoor reference frame to the global coordinate system using GPS-tagged exterior points. WiSight first identifies virtual anchor positions on building exteriors through outdoor signal propagation modeling, then reconstructs indoor AP configurations using unlabeled RSS measurement pairs and multidimensional scaling. Extensive evaluation across multiple buildings demonstrates that WiSight achieves an average 3D AP localization error of 7.1 m (median: 6.8 m), reducing error by 59% compared to an opportunistic GPS-based approach. In office environments, WiSight attains 9.6 m error (median: 8.5 m)—22% lower than the state-of-the-art deep learning-based method, while achieving 82% floor-level accuracy without requiring any indoor RPs or training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信