探索单磷原子修饰缺陷MXene中NO电还原机理:第一性原理计算

IF 3.1 3区 化学 Q3 CHEMISTRY, PHYSICAL
Bin Huang , Guang yuan Ren , Rong Chen , Neng Li
{"title":"探索单磷原子修饰缺陷MXene中NO电还原机理:第一性原理计算","authors":"Bin Huang ,&nbsp;Guang yuan Ren ,&nbsp;Rong Chen ,&nbsp;Neng Li","doi":"10.1016/j.cplett.2025.142178","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient electrocatalytic NO reduction (ENOR) to NH<sub>3</sub> is a critical reaction, offering significant economic and environmental benefits. The defective MXene embedded with the single phosphorus atom at the O vacancy were investigated for ENOR using first principles calculations. The results indicate that P@MXene can efficiently activate NO via N-end mode, with P@Cr<sub>2</sub>CO<sub>2</sub> and P@MoCO<sub>2</sub> exhibiting particularly low limiting potentials of −0.27 V for NO conversion to NH<sub>3</sub>. The origin of the catalytic activity of metal-free SACs is elucidated through the “reversal-activation” mechanism. After a rigorous four−stage screening process, stable P@Cr<sub>2</sub>CO<sub>2</sub> exhibits high performance toward NH<sub>3</sub> synthesis.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"874 ","pages":"Article 142178"},"PeriodicalIF":3.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the NO electroreduction mechanism in single phosphorus atom decorated defective MXene: A first-principles calculations\",\"authors\":\"Bin Huang ,&nbsp;Guang yuan Ren ,&nbsp;Rong Chen ,&nbsp;Neng Li\",\"doi\":\"10.1016/j.cplett.2025.142178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient electrocatalytic NO reduction (ENOR) to NH<sub>3</sub> is a critical reaction, offering significant economic and environmental benefits. The defective MXene embedded with the single phosphorus atom at the O vacancy were investigated for ENOR using first principles calculations. The results indicate that P@MXene can efficiently activate NO via N-end mode, with P@Cr<sub>2</sub>CO<sub>2</sub> and P@MoCO<sub>2</sub> exhibiting particularly low limiting potentials of −0.27 V for NO conversion to NH<sub>3</sub>. The origin of the catalytic activity of metal-free SACs is elucidated through the “reversal-activation” mechanism. After a rigorous four−stage screening process, stable P@Cr<sub>2</sub>CO<sub>2</sub> exhibits high performance toward NH<sub>3</sub> synthesis.</div></div>\",\"PeriodicalId\":273,\"journal\":{\"name\":\"Chemical Physics Letters\",\"volume\":\"874 \",\"pages\":\"Article 142178\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009261425003185\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425003185","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高效电催化NO还原(ENOR)制NH3是一种具有显著经济效益和环境效益的关键反应。用第一性原理计算研究了O空位上单磷原子包埋的缺陷MXene。结果表明,P@MXene可以有效地通过n端模式激活NO,其中P@Cr2CO2和P@MoCO2对NO转化为NH3的极限电位特别低,为- 0.27 V。通过“逆活化”机理,阐明了无金属SACs催化活性的来源。经过严格的四阶段筛选过程,稳定P@Cr2CO2对NH3合成表现出高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing the NO electroreduction mechanism in single phosphorus atom decorated defective MXene: A first-principles calculations

Probing the NO electroreduction mechanism in single phosphorus atom decorated defective MXene: A first-principles calculations
The efficient electrocatalytic NO reduction (ENOR) to NH3 is a critical reaction, offering significant economic and environmental benefits. The defective MXene embedded with the single phosphorus atom at the O vacancy were investigated for ENOR using first principles calculations. The results indicate that P@MXene can efficiently activate NO via N-end mode, with P@Cr2CO2 and P@MoCO2 exhibiting particularly low limiting potentials of −0.27 V for NO conversion to NH3. The origin of the catalytic activity of metal-free SACs is elucidated through the “reversal-activation” mechanism. After a rigorous four−stage screening process, stable P@Cr2CO2 exhibits high performance toward NH3 synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信