语音情感识别的多模态解纠缠隐式蒸馏

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xin Qi, Yujun Wen, Junpeng Gong, Pengzhou Zhang, Yao Zheng
{"title":"语音情感识别的多模态解纠缠隐式蒸馏","authors":"Xin Qi,&nbsp;Yujun Wen,&nbsp;Junpeng Gong,&nbsp;Pengzhou Zhang,&nbsp;Yao Zheng","doi":"10.1016/j.ipm.2025.104213","DOIUrl":null,"url":null,"abstract":"<div><div>Audio signals are generally utilized with textual data for speech emotion recognition. Nevertheless, cross-modal interactions suffer from distribution discrepancy and information redundancy, leading to an inaccurate multimodal representation. Hence, this paper proposes a multimodal disentanglement implicit distillation model (MDID) that excavates and exploits each modality’s sentiment and specific characteristics. Specifically, the pre-trained models extract high-level acoustic and textual features and align them via an attention mechanism. Then, each modality is disentangled into modality sentiment-specific features. Subsequently, feature-level and logit-level distillation distill the purified modality-specific feature into the modality-sentiment feature. Compared to the adaptive fusion feature, solely employing the refined modality-sentiment feature yields superior performance for emotion recognition. Comprehensive experiments on the IEMOCAP and RAVDESS datasets indicate that MDID outperforms state-of-the-art approaches.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 5","pages":"Article 104213"},"PeriodicalIF":7.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal disentanglement implicit distillation for speech emotion recognition\",\"authors\":\"Xin Qi,&nbsp;Yujun Wen,&nbsp;Junpeng Gong,&nbsp;Pengzhou Zhang,&nbsp;Yao Zheng\",\"doi\":\"10.1016/j.ipm.2025.104213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Audio signals are generally utilized with textual data for speech emotion recognition. Nevertheless, cross-modal interactions suffer from distribution discrepancy and information redundancy, leading to an inaccurate multimodal representation. Hence, this paper proposes a multimodal disentanglement implicit distillation model (MDID) that excavates and exploits each modality’s sentiment and specific characteristics. Specifically, the pre-trained models extract high-level acoustic and textual features and align them via an attention mechanism. Then, each modality is disentangled into modality sentiment-specific features. Subsequently, feature-level and logit-level distillation distill the purified modality-specific feature into the modality-sentiment feature. Compared to the adaptive fusion feature, solely employing the refined modality-sentiment feature yields superior performance for emotion recognition. Comprehensive experiments on the IEMOCAP and RAVDESS datasets indicate that MDID outperforms state-of-the-art approaches.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 5\",\"pages\":\"Article 104213\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325001542\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325001542","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

音频信号通常与文本数据一起用于语音情感识别。然而,跨模态交互会受到分布差异和信息冗余的影响,导致不准确的多模态表示。因此,本文提出了一种多模态解纠缠隐式蒸馏模型(MDID),该模型挖掘和利用了每个模态的情感和特定特征。具体来说,预训练模型提取高级声学和文本特征,并通过注意机制对齐它们。然后,将每个情态分解为情态情感特定特征。随后,特征级和逻辑级蒸馏将纯化的特定于模态的特征提炼成模态-情感特征。与自适应融合特征相比,单独使用改进的情态情感特征在情感识别方面具有更好的性能。在IEMOCAP和RAVDESS数据集上的综合实验表明,MDID优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal disentanglement implicit distillation for speech emotion recognition
Audio signals are generally utilized with textual data for speech emotion recognition. Nevertheless, cross-modal interactions suffer from distribution discrepancy and information redundancy, leading to an inaccurate multimodal representation. Hence, this paper proposes a multimodal disentanglement implicit distillation model (MDID) that excavates and exploits each modality’s sentiment and specific characteristics. Specifically, the pre-trained models extract high-level acoustic and textual features and align them via an attention mechanism. Then, each modality is disentangled into modality sentiment-specific features. Subsequently, feature-level and logit-level distillation distill the purified modality-specific feature into the modality-sentiment feature. Compared to the adaptive fusion feature, solely employing the refined modality-sentiment feature yields superior performance for emotion recognition. Comprehensive experiments on the IEMOCAP and RAVDESS datasets indicate that MDID outperforms state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信