局部最分裂可靠图的刻画

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Pablo Romero
{"title":"局部最分裂可靠图的刻画","authors":"Pablo Romero","doi":"10.1016/j.tcs.2025.115327","DOIUrl":null,"url":null,"abstract":"<div><div>A two-terminal graph is a graph equipped with two distinguished vertices, called terminals. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> be the set of all nonisomorphic connected simple two-terminal graphs on <em>n</em> vertices and <em>m</em> edges. Let <em>G</em> be any two-terminal graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span>. For every number <em>p</em> in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we let each of the edges in <em>G</em> be independently deleted with probability <span><math><mn>1</mn><mo>−</mo><mi>p</mi></math></span>. The <em>split reliability</em> <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> is the probability that the resulting spanning subgraph has precisely 2 connected components, each one including one terminal. The two-terminal graph <em>G</em> is <em>uniformly most split reliable</em> if <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>≥</mo><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> for each <em>H</em> in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> and every <em>p</em> in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We say <em>G</em> is <em>locally most split reliable</em> if there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>≥</mo><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> for each <em>H</em> in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> and every <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>Brown and McMullin showed that there exists uniformly most split reliable graphs in each class <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> such that <span><math><mi>m</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>m</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>, or <span><math><mi>m</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span>. The authors also proved that there is no uniformly most split reliable two-terminal graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span> and specified in which classes <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> such that <span><math><mi>n</mi><mo>≤</mo><mn>7</mn></math></span> there exist uniformly most split reliable graphs. The existence or nonexistence of uniformly most split reliable graphs in the remaining cases is posed by Brown and McMullin as an open problem.</div><div>In this work, the set <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> consisting of all locally most split reliable graphs is characterized in each nonempty class <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span>. It is proved that a graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> is locally most split reliable if and only if it is either the balloon graph equipped with two terminals whose distance equals the diameter of the balloon, or any other two-terminal graph whose split reliability equals that of the balloon graph. Finally, it is proved that there is no uniformly most split reliable graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and <span><math><mi>n</mi><mo>≤</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1047 ","pages":"Article 115327"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of locally most split reliable graphs\",\"authors\":\"Pablo Romero\",\"doi\":\"10.1016/j.tcs.2025.115327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A two-terminal graph is a graph equipped with two distinguished vertices, called terminals. Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> be the set of all nonisomorphic connected simple two-terminal graphs on <em>n</em> vertices and <em>m</em> edges. Let <em>G</em> be any two-terminal graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span>. For every number <em>p</em> in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> we let each of the edges in <em>G</em> be independently deleted with probability <span><math><mn>1</mn><mo>−</mo><mi>p</mi></math></span>. The <em>split reliability</em> <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> is the probability that the resulting spanning subgraph has precisely 2 connected components, each one including one terminal. The two-terminal graph <em>G</em> is <em>uniformly most split reliable</em> if <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>≥</mo><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> for each <em>H</em> in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> and every <em>p</em> in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We say <em>G</em> is <em>locally most split reliable</em> if there exists <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span> such that <span><math><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo><mo>≥</mo><mi>S</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>(</mo><mi>p</mi><mo>)</mo></math></span> for each <em>H</em> in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> and every <em>p</em> in <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>δ</mi><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>Brown and McMullin showed that there exists uniformly most split reliable graphs in each class <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> such that <span><math><mi>m</mi><mo>=</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, <span><math><mi>m</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow></math></span>, or <span><math><mi>m</mi><mo>=</mo><mrow><mo>(</mo><mtable><mtr><mtd><mi>n</mi></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>−</mo><mn>1</mn></math></span>. The authors also proved that there is no uniformly most split reliable two-terminal graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>6</mn></math></span> and specified in which classes <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> such that <span><math><mi>n</mi><mo>≤</mo><mn>7</mn></math></span> there exist uniformly most split reliable graphs. The existence or nonexistence of uniformly most split reliable graphs in the remaining cases is posed by Brown and McMullin as an open problem.</div><div>In this work, the set <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> consisting of all locally most split reliable graphs is characterized in each nonempty class <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span>. It is proved that a graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> is locally most split reliable if and only if it is either the balloon graph equipped with two terminals whose distance equals the diameter of the balloon, or any other two-terminal graph whose split reliability equals that of the balloon graph. Finally, it is proved that there is no uniformly most split reliable graph in <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub></math></span> when <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span> and <span><math><mi>n</mi><mo>≤</mo><mi>m</mi><mo>≤</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></mtd></mtr><mtr><mtd><mn>2</mn></mtd></mtr></mtable><mo>)</mo></mrow><mo>+</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1047 \",\"pages\":\"Article 115327\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397525002658\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525002658","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

双端图是具有两个不同顶点(称为终端)的图。设Tn,m为n个顶点和m条边上的所有非同构连通简单二端点图的集合。设G是n,m中的任意二端图。对于[0,1]中的每个数字p,我们让G中的每条边都以1−p的概率被独立删除。拆分可靠性SRG(p)是生成子图具有精确的2个连接组件,每个组件包括一个终端的概率。对于Tn、m中的每个H和[0,1]中的每个p,如果SRG(p)≥SRH(p),则双端图G是一致最分裂可靠的。如果存在δ>;0,使得Tn,m中的每个H和(1 - δ,1)中的每个p的SRG(p)≥SRH(p),我们说G是局部最分裂可靠的。Brown和McMullin证明了在每一类n,m中存在一致的最分裂可靠图,使得m=n−1,m=(n2),或m=(n2)−1。还证明了当n≥6时,在n,n中不存在一致最分裂可靠的两端点图,并说明在n≤7的n,m类中存在一致最分裂可靠图。Brown和McMullin将其余情况下一致最分裂可靠图的存在性或不存在性作为一个开放问题提出。在本文中,由所有局部最分裂可靠图组成的集合Gn,m在每个非空类Tn,m中被表征。证明了n,m中的图是局部最分裂可靠的,当且仅当它是具有两个端点的气球图,且其距离等于气球的直径,或者是任何其他两个端点的图,其分裂可靠度等于气球图。最后证明了当n≥7且n≤m≤(n−32)+3时,在n,m中不存在一致最分裂可靠图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of locally most split reliable graphs
A two-terminal graph is a graph equipped with two distinguished vertices, called terminals. Let Tn,m be the set of all nonisomorphic connected simple two-terminal graphs on n vertices and m edges. Let G be any two-terminal graph in Tn,m. For every number p in [0,1] we let each of the edges in G be independently deleted with probability 1p. The split reliability SRG(p) is the probability that the resulting spanning subgraph has precisely 2 connected components, each one including one terminal. The two-terminal graph G is uniformly most split reliable if SRG(p)SRH(p) for each H in Tn,m and every p in [0,1]. We say G is locally most split reliable if there exists δ>0 such that SRG(p)SRH(p) for each H in Tn,m and every p in (1δ,1).
Brown and McMullin showed that there exists uniformly most split reliable graphs in each class Tn,m such that m=n1, m=(n2), or m=(n2)1. The authors also proved that there is no uniformly most split reliable two-terminal graph in Tn,n when n6 and specified in which classes Tn,m such that n7 there exist uniformly most split reliable graphs. The existence or nonexistence of uniformly most split reliable graphs in the remaining cases is posed by Brown and McMullin as an open problem.
In this work, the set Gn,m consisting of all locally most split reliable graphs is characterized in each nonempty class Tn,m. It is proved that a graph in Tn,m is locally most split reliable if and only if it is either the balloon graph equipped with two terminals whose distance equals the diameter of the balloon, or any other two-terminal graph whose split reliability equals that of the balloon graph. Finally, it is proved that there is no uniformly most split reliable graph in Tn,m when n7 and nm(n32)+3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信