超临界co2辅助合成高密度Co簇/ n掺杂多孔碳作为可充电锌空气电池双功能氧电催化剂

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Shuai Gao , Yuxi Song , Huan Yang , Ning Wang , Juan Yang
{"title":"超临界co2辅助合成高密度Co簇/ n掺杂多孔碳作为可充电锌空气电池双功能氧电催化剂","authors":"Shuai Gao ,&nbsp;Yuxi Song ,&nbsp;Huan Yang ,&nbsp;Ning Wang ,&nbsp;Juan Yang","doi":"10.1016/j.jcis.2025.137945","DOIUrl":null,"url":null,"abstract":"<div><div>Rechargeable zinc-air batteries (ZABs) hold great promise for next-generation energy storage, but their practical application depends on the development of efficient bifunctional catalysts capable of catalyzing both the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during recharge. Herein, we propose a high-performance bifunctional oxygen electrocatalyst for ZABs, fabricated by encapsulating Co clusters into zeolite imidazole framework-8 (ZIF-8)-derived carbon via a supercritical CO<sub>2</sub> (scCO<sub>2</sub>) fluid-assisted method. The dual-protection combining spatial confinement from porous carbon frameworks and strong Co-N coordination anchoring enables the stabilization of high-density Co clusters and preventing its aggregation. Furthermore, the scCO<sub>2</sub> treatment reconstructs the mesoporous structure, significantly improving mass transport and exposing more accessible active sites. Density functional theory (DFT) calculations demonstrate that the surface Co-N moieties serve as highly active centers for the ORR, whereas the metallic Co sites within the clusters predominantly drive the OER. As a result, Co@N–C exhibits a remarkably low potential gap (ΔE = 0.68 V) between ORR and OER. When applied in aqueous ZABs, the catalyst delivers an impressive specific capacity of 780 mAh g<sub>Zn</sub><sup>−1</sup> and a peak power density of 170 mW cm<sup>−2</sup>, surpassing Pt/C + RuO<sub>2</sub>. Moreover, the solid-state ZABs assembled with this catalyst achieve a high peak power density of 87.0 mW cm<sup>−2</sup> along with long-time cycling stability of 200 h, demonstrating great potential for flexible and portable energy storage devices.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137945"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical CO2-assisted synthesis of high-density Co clusters/N-doped porous carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries\",\"authors\":\"Shuai Gao ,&nbsp;Yuxi Song ,&nbsp;Huan Yang ,&nbsp;Ning Wang ,&nbsp;Juan Yang\",\"doi\":\"10.1016/j.jcis.2025.137945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rechargeable zinc-air batteries (ZABs) hold great promise for next-generation energy storage, but their practical application depends on the development of efficient bifunctional catalysts capable of catalyzing both the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during recharge. Herein, we propose a high-performance bifunctional oxygen electrocatalyst for ZABs, fabricated by encapsulating Co clusters into zeolite imidazole framework-8 (ZIF-8)-derived carbon via a supercritical CO<sub>2</sub> (scCO<sub>2</sub>) fluid-assisted method. The dual-protection combining spatial confinement from porous carbon frameworks and strong Co-N coordination anchoring enables the stabilization of high-density Co clusters and preventing its aggregation. Furthermore, the scCO<sub>2</sub> treatment reconstructs the mesoporous structure, significantly improving mass transport and exposing more accessible active sites. Density functional theory (DFT) calculations demonstrate that the surface Co-N moieties serve as highly active centers for the ORR, whereas the metallic Co sites within the clusters predominantly drive the OER. As a result, Co@N–C exhibits a remarkably low potential gap (ΔE = 0.68 V) between ORR and OER. When applied in aqueous ZABs, the catalyst delivers an impressive specific capacity of 780 mAh g<sub>Zn</sub><sup>−1</sup> and a peak power density of 170 mW cm<sup>−2</sup>, surpassing Pt/C + RuO<sub>2</sub>. Moreover, the solid-state ZABs assembled with this catalyst achieve a high peak power density of 87.0 mW cm<sup>−2</sup> along with long-time cycling stability of 200 h, demonstrating great potential for flexible and portable energy storage devices.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137945\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013360\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可充电锌空气电池(ZABs)在下一代储能领域具有广阔的发展前景,但其实际应用依赖于能够同时催化放电过程中的氧还原反应(ORR)和充电过程中的氧析反应(OER)的高效双功能催化剂的开发。在此,我们提出了一种高性能的ZABs双功能氧电催化剂,该催化剂通过超临界CO2 (scCO2)流体辅助方法将Co簇封装到沸石咪唑骨架-8 (ZIF-8)衍生的碳中。多孔碳框架的空间限制和强Co- n配位锚定的双重保护,使高密度Co簇稳定并防止其聚集。此外,scCO2处理重建了介孔结构,显著改善了质量传输并暴露了更多可接近的活性位点。密度泛函理论(DFT)计算表明,表面Co- n基团是ORR的高活性中心,而团簇内的金属Co位主要驱动OER。因此,Co@N -C在ORR和OER之间表现出非常低的电位间隙(ΔE = 0.68 V)。当应用于含水ZABs时,该催化剂提供了780 mAh gZn−1的令人印象深刻的比容量和170 mW cm−2的峰值功率密度,超过了Pt/C + RuO2。此外,用该催化剂组装的固态ZABs实现了87.0 mW cm−2的峰值功率密度和200 h的长时间循环稳定性,显示出柔性和便携式储能设备的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supercritical CO2-assisted synthesis of high-density Co clusters/N-doped porous carbon as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
Rechargeable zinc-air batteries (ZABs) hold great promise for next-generation energy storage, but their practical application depends on the development of efficient bifunctional catalysts capable of catalyzing both the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during recharge. Herein, we propose a high-performance bifunctional oxygen electrocatalyst for ZABs, fabricated by encapsulating Co clusters into zeolite imidazole framework-8 (ZIF-8)-derived carbon via a supercritical CO2 (scCO2) fluid-assisted method. The dual-protection combining spatial confinement from porous carbon frameworks and strong Co-N coordination anchoring enables the stabilization of high-density Co clusters and preventing its aggregation. Furthermore, the scCO2 treatment reconstructs the mesoporous structure, significantly improving mass transport and exposing more accessible active sites. Density functional theory (DFT) calculations demonstrate that the surface Co-N moieties serve as highly active centers for the ORR, whereas the metallic Co sites within the clusters predominantly drive the OER. As a result, Co@N–C exhibits a remarkably low potential gap (ΔE = 0.68 V) between ORR and OER. When applied in aqueous ZABs, the catalyst delivers an impressive specific capacity of 780 mAh gZn−1 and a peak power density of 170 mW cm−2, surpassing Pt/C + RuO2. Moreover, the solid-state ZABs assembled with this catalyst achieve a high peak power density of 87.0 mW cm−2 along with long-time cycling stability of 200 h, demonstrating great potential for flexible and portable energy storage devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信