{"title":"离子表面活性剂界面的双层结构和界面张力","authors":"Emerson M. Uhlig, Aditya S. Khair","doi":"10.1016/j.jcis.2025.137924","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><div>The electrical double-layer structure at an ionic surfactant-laden interface is unique due to the nonlinear coupling of interfacial charging and adsorption kinetics. Consequently, the interfacial equation of state is nonideal even at low surfactant concentrations.</div></div><div><h3>Analysis and computations</h3><div>We analyze the equilibrium double-layer structure and interfacial tension of a planar interface that has a surface charge density derived from adsorbed ionic surfactants, as opposed to a surface whose charge or potential is specified <em>a priori</em>. Our analysis utilizes matched asymptotic expansions in the limit where the Debye length (<span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>) is much smaller than the surfactant depletion length (<em>h</em>), i.e. <span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>κ</mi><mi>h</mi><mo>)</mo><mo>≪</mo><mn>1</mn></math></span>. The asymptotic analysis is verified against numerical computations.</div></div><div><h3>Findings</h3><div>The interfacial concentration of surfactant is asymptotically small due to electrostatic repulsion, scaling as <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>Γ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> is the maximum packing surface concentration. Moreover, the atypical double-layer structure consists of an inner layer of width <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mi>h</mi><mo>)</mo></math></span> within a Debye layer of width <span><math><mi>O</mi><mo>(</mo><mi>ε</mi><mi>h</mi><mo>)</mo></math></span>, outside of which is an electroneutral bulk solution of surfactant and counterions at uniform concentration <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>. The surfactant and counterion concentrations in the inner layer scale as <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> respectively, whereas both are <span><math><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></mrow></math></span> in the Debye layer. The interfacial tension is predicted to decrease from its clean value (i.e. in the absence of surfactant) as <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. This asymptotic prediction is in qualitative agreement with experimental data. Our elucidation of this unique double-layer structure could provide new approaches to analyze dynamic interfacial tension, dilatational surface rheology and emulsion stability.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137924"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-layer structure and interfacial tension at an ionic surfactant-laden interface\",\"authors\":\"Emerson M. Uhlig, Aditya S. Khair\",\"doi\":\"10.1016/j.jcis.2025.137924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Hypothesis</h3><div>The electrical double-layer structure at an ionic surfactant-laden interface is unique due to the nonlinear coupling of interfacial charging and adsorption kinetics. Consequently, the interfacial equation of state is nonideal even at low surfactant concentrations.</div></div><div><h3>Analysis and computations</h3><div>We analyze the equilibrium double-layer structure and interfacial tension of a planar interface that has a surface charge density derived from adsorbed ionic surfactants, as opposed to a surface whose charge or potential is specified <em>a priori</em>. Our analysis utilizes matched asymptotic expansions in the limit where the Debye length (<span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>) is much smaller than the surfactant depletion length (<em>h</em>), i.e. <span><math><mi>ε</mi><mo>=</mo><mn>1</mn><mo>/</mo><mo>(</mo><mi>κ</mi><mi>h</mi><mo>)</mo><mo>≪</mo><mn>1</mn></math></span>. The asymptotic analysis is verified against numerical computations.</div></div><div><h3>Findings</h3><div>The interfacial concentration of surfactant is asymptotically small due to electrostatic repulsion, scaling as <span><math><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>Γ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> is the maximum packing surface concentration. Moreover, the atypical double-layer structure consists of an inner layer of width <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>4</mn><mo>/</mo><mn>3</mn></mrow></msup><mi>h</mi><mo>)</mo></math></span> within a Debye layer of width <span><math><mi>O</mi><mo>(</mo><mi>ε</mi><mi>h</mi><mo>)</mo></math></span>, outside of which is an electroneutral bulk solution of surfactant and counterions at uniform concentration <span><math><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>. The surfactant and counterion concentrations in the inner layer scale as <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></math></span> respectively, whereas both are <span><math><mi>O</mi><mrow><mo>(</mo><msub><mrow><mi>c</mi></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo></mrow></math></span> in the Debye layer. The interfacial tension is predicted to decrease from its clean value (i.e. in the absence of surfactant) as <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mn>2</mn><mo>/</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>. This asymptotic prediction is in qualitative agreement with experimental data. Our elucidation of this unique double-layer structure could provide new approaches to analyze dynamic interfacial tension, dilatational surface rheology and emulsion stability.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137924\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013153\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Double-layer structure and interfacial tension at an ionic surfactant-laden interface
Hypothesis
The electrical double-layer structure at an ionic surfactant-laden interface is unique due to the nonlinear coupling of interfacial charging and adsorption kinetics. Consequently, the interfacial equation of state is nonideal even at low surfactant concentrations.
Analysis and computations
We analyze the equilibrium double-layer structure and interfacial tension of a planar interface that has a surface charge density derived from adsorbed ionic surfactants, as opposed to a surface whose charge or potential is specified a priori. Our analysis utilizes matched asymptotic expansions in the limit where the Debye length () is much smaller than the surfactant depletion length (h), i.e. . The asymptotic analysis is verified against numerical computations.
Findings
The interfacial concentration of surfactant is asymptotically small due to electrostatic repulsion, scaling as , where is the maximum packing surface concentration. Moreover, the atypical double-layer structure consists of an inner layer of width within a Debye layer of width , outside of which is an electroneutral bulk solution of surfactant and counterions at uniform concentration . The surfactant and counterion concentrations in the inner layer scale as and respectively, whereas both are in the Debye layer. The interfacial tension is predicted to decrease from its clean value (i.e. in the absence of surfactant) as . This asymptotic prediction is in qualitative agreement with experimental data. Our elucidation of this unique double-layer structure could provide new approaches to analyze dynamic interfacial tension, dilatational surface rheology and emulsion stability.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies