具有协同吸附-电催化功能的NiO-Ni2P/C3N4异质结构抑制硫锂电池中多硫穿梭效应

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yaolin Hou , Jolla Kullgren , Lei Han , Pengyuan Qian , Wei Yuan , Jia Liu , Haiming Xie , Jiefang Zhu
{"title":"具有协同吸附-电催化功能的NiO-Ni2P/C3N4异质结构抑制硫锂电池中多硫穿梭效应","authors":"Yaolin Hou ,&nbsp;Jolla Kullgren ,&nbsp;Lei Han ,&nbsp;Pengyuan Qian ,&nbsp;Wei Yuan ,&nbsp;Jia Liu ,&nbsp;Haiming Xie ,&nbsp;Jiefang Zhu","doi":"10.1016/j.jcis.2025.137972","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur (Li-S) batteries, renowned for their exceptional theoretical energy density, are positioned as a leading candidate for future energy storage systems, offering a potential pathway to overcome the energy density limitations of conventional lithium-ion batteries. Nevertheless, the notorious lithium polysulfides (LiPSs) shuttle effect and sluggish redox kinetics hinder their practical application. To resolve these challenges, we report a novel NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub> heterostructure synthesized via an in-situ phosphation process. Herein, we present an in situ phosphorylation strategy for the construction of NiO-Ni<sub>2</sub>P heterojunctions anchored on a conductive C<sub>3</sub>N<sub>4</sub> substrate (NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>) for further integration into commercial polypropylene (PP) separator (denoted as NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>@PP). Mechanistic studies demonstrated that the NiO phase facilitated strong chemisorption of LiPSs, while the Ni<sub>2</sub>P component reduced the energy barrier for Li<sub>2</sub>S dissolution through optimised d-band electron transfer. Concurrently, the C<sub>3</sub>N<sub>4</sub> framework enhanced the interfacial charge transfer and significantly reduced the charge transfer resistance. Benefiting from the synergistic “adsorption-transformation-conduction” triple-function, the cells with the NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>@PP separator exhibit remarkable cycling stability (over 300 cycles at 3C) and outstanding rate capability (82.5 % capacity retention after 200 cycles at 5C). This work provides atomic-level insights into the engineering of multi-step sulfur electrochemical heterostructures, providing a generic design paradigm for high-energy metal-sulfur batteries.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137972"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NiO-Ni2P/C3N4 heterostructures with synergistic adsorption-electrocatalysis functions for suppressing polysulfide shuttle effect in lithium sulfur batteries\",\"authors\":\"Yaolin Hou ,&nbsp;Jolla Kullgren ,&nbsp;Lei Han ,&nbsp;Pengyuan Qian ,&nbsp;Wei Yuan ,&nbsp;Jia Liu ,&nbsp;Haiming Xie ,&nbsp;Jiefang Zhu\",\"doi\":\"10.1016/j.jcis.2025.137972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur (Li-S) batteries, renowned for their exceptional theoretical energy density, are positioned as a leading candidate for future energy storage systems, offering a potential pathway to overcome the energy density limitations of conventional lithium-ion batteries. Nevertheless, the notorious lithium polysulfides (LiPSs) shuttle effect and sluggish redox kinetics hinder their practical application. To resolve these challenges, we report a novel NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub> heterostructure synthesized via an in-situ phosphation process. Herein, we present an in situ phosphorylation strategy for the construction of NiO-Ni<sub>2</sub>P heterojunctions anchored on a conductive C<sub>3</sub>N<sub>4</sub> substrate (NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>) for further integration into commercial polypropylene (PP) separator (denoted as NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>@PP). Mechanistic studies demonstrated that the NiO phase facilitated strong chemisorption of LiPSs, while the Ni<sub>2</sub>P component reduced the energy barrier for Li<sub>2</sub>S dissolution through optimised d-band electron transfer. Concurrently, the C<sub>3</sub>N<sub>4</sub> framework enhanced the interfacial charge transfer and significantly reduced the charge transfer resistance. Benefiting from the synergistic “adsorption-transformation-conduction” triple-function, the cells with the NiO-Ni<sub>2</sub>P/C<sub>3</sub>N<sub>4</sub>@PP separator exhibit remarkable cycling stability (over 300 cycles at 3C) and outstanding rate capability (82.5 % capacity retention after 200 cycles at 5C). This work provides atomic-level insights into the engineering of multi-step sulfur electrochemical heterostructures, providing a generic design paradigm for high-energy metal-sulfur batteries.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137972\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013633\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(li -硫)电池以其卓越的理论能量密度而闻名,被定位为未来储能系统的主要候选者,为克服传统锂离子电池的能量密度限制提供了一条潜在的途径。然而,众所周知的多硫化锂(LiPSs)穿梭效应和缓慢的氧化还原动力学阻碍了它们的实际应用。为了解决这些挑战,我们报道了一种新的NiO-Ni2P/C3N4异质结构,通过原位磷化工艺合成。在此,我们提出了一种原位磷酸化策略,用于构建固定在导电C3N4衬底上的NiO-Ni2P异质结(NiO-Ni2P/C3N4),以进一步整合到商用聚丙烯(PP)分离器中(表示为NiO-Ni2P/C3N4@PP)。机理研究表明,NiO相促进了lips的强化学吸附,而Ni2P组分通过优化d带电子转移降低了Li2S溶解的能垒。同时,C3N4框架增强了界面电荷转移,显著降低了电荷转移阻力。得益于“吸附-转化-传导”三重功能的协同作用,使用NiO-Ni2P/C3N4@PP分离器的电池具有出色的循环稳定性(在3C下超过300次循环)和出色的倍率能力(在5C下200次循环后容量保持率为82.5%)。这项工作为多步骤硫电化学异质结构的工程提供了原子水平的见解,为高能金属硫电池提供了一个通用的设计范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NiO-Ni2P/C3N4 heterostructures with synergistic adsorption-electrocatalysis functions for suppressing polysulfide shuttle effect in lithium sulfur batteries
Lithium-sulfur (Li-S) batteries, renowned for their exceptional theoretical energy density, are positioned as a leading candidate for future energy storage systems, offering a potential pathway to overcome the energy density limitations of conventional lithium-ion batteries. Nevertheless, the notorious lithium polysulfides (LiPSs) shuttle effect and sluggish redox kinetics hinder their practical application. To resolve these challenges, we report a novel NiO-Ni2P/C3N4 heterostructure synthesized via an in-situ phosphation process. Herein, we present an in situ phosphorylation strategy for the construction of NiO-Ni2P heterojunctions anchored on a conductive C3N4 substrate (NiO-Ni2P/C3N4) for further integration into commercial polypropylene (PP) separator (denoted as NiO-Ni2P/C3N4@PP). Mechanistic studies demonstrated that the NiO phase facilitated strong chemisorption of LiPSs, while the Ni2P component reduced the energy barrier for Li2S dissolution through optimised d-band electron transfer. Concurrently, the C3N4 framework enhanced the interfacial charge transfer and significantly reduced the charge transfer resistance. Benefiting from the synergistic “adsorption-transformation-conduction” triple-function, the cells with the NiO-Ni2P/C3N4@PP separator exhibit remarkable cycling stability (over 300 cycles at 3C) and outstanding rate capability (82.5 % capacity retention after 200 cycles at 5C). This work provides atomic-level insights into the engineering of multi-step sulfur electrochemical heterostructures, providing a generic design paradigm for high-energy metal-sulfur batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信