用于预测调强放疗治疗计划的光束剂量分布的物理信息深度学习模型

IF 3.4 Q2 ONCOLOGY
Zihan Sun , Yongheng Yan , Yuanhua Chen , Guorong Yao , Jiazhou Wang , Weigang Hu , Zhongjie Lu , Senxiang Yan
{"title":"用于预测调强放疗治疗计划的光束剂量分布的物理信息深度学习模型","authors":"Zihan Sun ,&nbsp;Yongheng Yan ,&nbsp;Yuanhua Chen ,&nbsp;Guorong Yao ,&nbsp;Jiazhou Wang ,&nbsp;Weigang Hu ,&nbsp;Zhongjie Lu ,&nbsp;Senxiang Yan","doi":"10.1016/j.phro.2025.100779","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>We aimed to develop a physics-informed deep learning model for beam dose prediction in intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal cancer.</div></div><div><h3>Materials and methods</h3><div>A total of 100 nine-beam IMRT cases are enrolled in this study retrospectively, divided into training set (72), validation set (8), and test set (20). CT images and contour inputs are preprocessed to generate multiple feature maps for each beam angle, incorporating the dose fall-off principles in water for 6MV photons. Four beam dose prediction models using different loss are built using the U-Net framework to predict each beam dose simultaneously. Beam dose mean absolute error (MAE), beam dose gradient Euclidean distance, total dose MAE, and total dose gradient Euclidean distance are calculated to evaluate model performance.</div></div><div><h3>Results</h3><div>The dose prediction model with beam dose loss, gradient loss, and masked loss achieves total dose MAE of 2.92 Gy, total dose gradient Euclidean distance of 1.35, beam dose MAE of 0.96 Gy, and beam dose gradient Euclidean distance of 0.30.</div></div><div><h3>Conclusions</h3><div>This study proposes a physics-informed deep learning network specifically for the task of beam dose prediction. Additionally, this study addresses the interpretability challenges in deep learning models by employing a crosshair sampling scheme to validate the relationships between input and output channels.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"34 ","pages":"Article 100779"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physics-informed deep learning model for predicting beam dose distribution of intensity-modulated radiation therapy treatment plans\",\"authors\":\"Zihan Sun ,&nbsp;Yongheng Yan ,&nbsp;Yuanhua Chen ,&nbsp;Guorong Yao ,&nbsp;Jiazhou Wang ,&nbsp;Weigang Hu ,&nbsp;Zhongjie Lu ,&nbsp;Senxiang Yan\",\"doi\":\"10.1016/j.phro.2025.100779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>We aimed to develop a physics-informed deep learning model for beam dose prediction in intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal cancer.</div></div><div><h3>Materials and methods</h3><div>A total of 100 nine-beam IMRT cases are enrolled in this study retrospectively, divided into training set (72), validation set (8), and test set (20). CT images and contour inputs are preprocessed to generate multiple feature maps for each beam angle, incorporating the dose fall-off principles in water for 6MV photons. Four beam dose prediction models using different loss are built using the U-Net framework to predict each beam dose simultaneously. Beam dose mean absolute error (MAE), beam dose gradient Euclidean distance, total dose MAE, and total dose gradient Euclidean distance are calculated to evaluate model performance.</div></div><div><h3>Results</h3><div>The dose prediction model with beam dose loss, gradient loss, and masked loss achieves total dose MAE of 2.92 Gy, total dose gradient Euclidean distance of 1.35, beam dose MAE of 0.96 Gy, and beam dose gradient Euclidean distance of 0.30.</div></div><div><h3>Conclusions</h3><div>This study proposes a physics-informed deep learning network specifically for the task of beam dose prediction. Additionally, this study addresses the interpretability challenges in deep learning models by employing a crosshair sampling scheme to validate the relationships between input and output channels.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"34 \",\"pages\":\"Article 100779\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631625000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的我们旨在建立一种基于物理的深度学习模型,用于鼻咽癌患者调强放疗(IMRT)的束剂量预测。材料与方法本研究回顾性纳入100例九束IMRT病例,分为训练集(72例)、验证集(8例)和测试集(20例)。结合6MV光子在水中的剂量衰减原理,对CT图像和轮廓输入进行预处理,为每个光束角度生成多个特征图。利用U-Net框架,建立了4种不同损耗的光束剂量预测模型,同时预测了各光束剂量。计算光束剂量平均绝对误差(MAE)、光束剂量梯度欧几里得距离、总剂量MAE和总剂量梯度欧几里得距离来评价模型的性能。结果考虑束流剂量损失、梯度损失和掩蔽损失的剂量预测模型的总剂量MAE为2.92 Gy,总剂量梯度欧氏距离为1.35,束流剂量MAE为0.96 Gy,束流剂量梯度欧氏距离为0.30。本研究提出了一个专门用于光束剂量预测任务的物理信息深度学习网络。此外,本研究通过采用十字瞄准采样方案来验证输入和输出通道之间的关系,解决了深度学习模型中的可解释性挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A physics-informed deep learning model for predicting beam dose distribution of intensity-modulated radiation therapy treatment plans

Background and purpose

We aimed to develop a physics-informed deep learning model for beam dose prediction in intensity-modulated radiation therapy (IMRT) for patients with nasopharyngeal cancer.

Materials and methods

A total of 100 nine-beam IMRT cases are enrolled in this study retrospectively, divided into training set (72), validation set (8), and test set (20). CT images and contour inputs are preprocessed to generate multiple feature maps for each beam angle, incorporating the dose fall-off principles in water for 6MV photons. Four beam dose prediction models using different loss are built using the U-Net framework to predict each beam dose simultaneously. Beam dose mean absolute error (MAE), beam dose gradient Euclidean distance, total dose MAE, and total dose gradient Euclidean distance are calculated to evaluate model performance.

Results

The dose prediction model with beam dose loss, gradient loss, and masked loss achieves total dose MAE of 2.92 Gy, total dose gradient Euclidean distance of 1.35, beam dose MAE of 0.96 Gy, and beam dose gradient Euclidean distance of 0.30.

Conclusions

This study proposes a physics-informed deep learning network specifically for the task of beam dose prediction. Additionally, this study addresses the interpretability challenges in deep learning models by employing a crosshair sampling scheme to validate the relationships between input and output channels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信