迭代细化和目标衔接优化临床信息提取的大型语言模型

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
David Hein, Alana Christie, Michael Holcomb, Bingqing Xie, AJ Jain, Joseph Vento, Neil Rakheja, Ameer Hamza Shakur, Scott Christley, Lindsay G. Cowell, James Brugarolas, Andrew R. Jamieson, Payal Kapur
{"title":"迭代细化和目标衔接优化临床信息提取的大型语言模型","authors":"David Hein, Alana Christie, Michael Holcomb, Bingqing Xie, AJ Jain, Joseph Vento, Neil Rakheja, Ameer Hamza Shakur, Scott Christley, Lindsay G. Cowell, James Brugarolas, Andrew R. Jamieson, Payal Kapur","doi":"10.1038/s41746-025-01686-z","DOIUrl":null,"url":null,"abstract":"<p>Extracting structured data from free-text medical records at scale is laborious, and traditional approaches struggle in complex clinical domains. We present a novel, end-to-end pipeline leveraging large language models (LLMs) for highly accurate information extraction and normalization from unstructured pathology reports, focusing initially on kidney tumors. Our innovation combines flexible prompt templates, the direct production of analysis-ready tabular data, and a rigorous, human-in-the-loop iterative refinement process guided by a comprehensive error ontology. Applying the finalized pipeline to 2297 kidney tumor reports with pre-existing templated data available for validation yielded a macro-averaged F1 of 0.99 for six kidney tumor subtypes and 0.97 for detecting kidney metastasis. We further demonstrate flexibility with multiple LLM backbones and adaptability to new domains, utilizing publicly available breast and prostate cancer reports. Beyond performance metrics or pipeline specifics, we emphasize the critical importance of task definition, interdisciplinary collaboration, and complexity management in LLM-based clinical workflows.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"41 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iterative refinement and goal articulation to optimize large language models for clinical information extraction\",\"authors\":\"David Hein, Alana Christie, Michael Holcomb, Bingqing Xie, AJ Jain, Joseph Vento, Neil Rakheja, Ameer Hamza Shakur, Scott Christley, Lindsay G. Cowell, James Brugarolas, Andrew R. Jamieson, Payal Kapur\",\"doi\":\"10.1038/s41746-025-01686-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extracting structured data from free-text medical records at scale is laborious, and traditional approaches struggle in complex clinical domains. We present a novel, end-to-end pipeline leveraging large language models (LLMs) for highly accurate information extraction and normalization from unstructured pathology reports, focusing initially on kidney tumors. Our innovation combines flexible prompt templates, the direct production of analysis-ready tabular data, and a rigorous, human-in-the-loop iterative refinement process guided by a comprehensive error ontology. Applying the finalized pipeline to 2297 kidney tumor reports with pre-existing templated data available for validation yielded a macro-averaged F1 of 0.99 for six kidney tumor subtypes and 0.97 for detecting kidney metastasis. We further demonstrate flexibility with multiple LLM backbones and adaptability to new domains, utilizing publicly available breast and prostate cancer reports. Beyond performance metrics or pipeline specifics, we emphasize the critical importance of task definition, interdisciplinary collaboration, and complexity management in LLM-based clinical workflows.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01686-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01686-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

大规模地从自由文本医疗记录中提取结构化数据是很费力的,而传统方法在复杂的临床领域也很吃力。我们提出了一种新颖的端到端管道,利用大型语言模型(llm)从非结构化病理报告中进行高度准确的信息提取和规范化,最初专注于肾脏肿瘤。我们的创新结合了灵活的提示模板,直接生成可供分析的表格数据,以及由全面的错误本体指导的严格的、人在循环的迭代改进过程。将最终的管道应用于2297份肾肿瘤报告,并使用预先存在的模板数据进行验证,6种肾肿瘤亚型的宏观平均F1为0.99,检测肾转移的宏观平均F1为0.97。我们进一步展示了多个LLM主干的灵活性和对新领域的适应性,利用公开可用的乳腺癌和前列腺癌报告。除了性能指标或管道细节,我们强调任务定义、跨学科协作和复杂性管理在基于法学硕士的临床工作流程中的关键重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Iterative refinement and goal articulation to optimize large language models for clinical information extraction

Iterative refinement and goal articulation to optimize large language models for clinical information extraction

Extracting structured data from free-text medical records at scale is laborious, and traditional approaches struggle in complex clinical domains. We present a novel, end-to-end pipeline leveraging large language models (LLMs) for highly accurate information extraction and normalization from unstructured pathology reports, focusing initially on kidney tumors. Our innovation combines flexible prompt templates, the direct production of analysis-ready tabular data, and a rigorous, human-in-the-loop iterative refinement process guided by a comprehensive error ontology. Applying the finalized pipeline to 2297 kidney tumor reports with pre-existing templated data available for validation yielded a macro-averaged F1 of 0.99 for six kidney tumor subtypes and 0.97 for detecting kidney metastasis. We further demonstrate flexibility with multiple LLM backbones and adaptability to new domains, utilizing publicly available breast and prostate cancer reports. Beyond performance metrics or pipeline specifics, we emphasize the critical importance of task definition, interdisciplinary collaboration, and complexity management in LLM-based clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信