Yu Ouyang, Yang Sung Sohn, Xinghua Chen, Rachel Nechushtai, Eli Pikarsky, Fan Xia, Fujian Huang, Itamar Willner
{"title":"脂质体原细胞组装中腺苷触发的动态和瞬态适配体网络","authors":"Yu Ouyang, Yang Sung Sohn, Xinghua Chen, Rachel Nechushtai, Eli Pikarsky, Fan Xia, Fujian Huang, Itamar Willner","doi":"10.1021/jacs.5c05090","DOIUrl":null,"url":null,"abstract":"The development of transient dissipative nucleic-acid–based reaction circuits and constitutional dynamic networks attracts growing interest as a means of emulating native dynamic reaction circuits. Recent efforts applying enzymes, DNAzymes, or light as catalysts controlling the transient, dissipative functions of DNA networks and circuits were reported. Moreover, the integration of the dynamic networks in protocell assemblies and the identification of potential applications are challenging objectives. Here, we introduce the adenosine (AD) aptamer subunit complex coupled with adenosine deaminase (ADA) as a versatile recognition/catalytic framework for driving transient allosterically AD-stabilized DNAzyme circuits or dissipative AD-stabilized constitutional dynamic networks. In addition, the AD/ADA-driven transient frameworks are integrated into liposome assemblies as protocell models. Functionalized liposomes carrying allosterically ATP-stabilized DNAzymes cleaving EGR-1 mRNA are fused with MCF-7 breast cancer cells, demonstrating effective gene therapy and selective apoptosis of cancer cells.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"56 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adenosine-Triggered Dynamic and Transient Aptamer-Based Networks Integrated in Liposome Protocell Assemblies\",\"authors\":\"Yu Ouyang, Yang Sung Sohn, Xinghua Chen, Rachel Nechushtai, Eli Pikarsky, Fan Xia, Fujian Huang, Itamar Willner\",\"doi\":\"10.1021/jacs.5c05090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of transient dissipative nucleic-acid–based reaction circuits and constitutional dynamic networks attracts growing interest as a means of emulating native dynamic reaction circuits. Recent efforts applying enzymes, DNAzymes, or light as catalysts controlling the transient, dissipative functions of DNA networks and circuits were reported. Moreover, the integration of the dynamic networks in protocell assemblies and the identification of potential applications are challenging objectives. Here, we introduce the adenosine (AD) aptamer subunit complex coupled with adenosine deaminase (ADA) as a versatile recognition/catalytic framework for driving transient allosterically AD-stabilized DNAzyme circuits or dissipative AD-stabilized constitutional dynamic networks. In addition, the AD/ADA-driven transient frameworks are integrated into liposome assemblies as protocell models. Functionalized liposomes carrying allosterically ATP-stabilized DNAzymes cleaving EGR-1 mRNA are fused with MCF-7 breast cancer cells, demonstrating effective gene therapy and selective apoptosis of cancer cells.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c05090\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05090","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Adenosine-Triggered Dynamic and Transient Aptamer-Based Networks Integrated in Liposome Protocell Assemblies
The development of transient dissipative nucleic-acid–based reaction circuits and constitutional dynamic networks attracts growing interest as a means of emulating native dynamic reaction circuits. Recent efforts applying enzymes, DNAzymes, or light as catalysts controlling the transient, dissipative functions of DNA networks and circuits were reported. Moreover, the integration of the dynamic networks in protocell assemblies and the identification of potential applications are challenging objectives. Here, we introduce the adenosine (AD) aptamer subunit complex coupled with adenosine deaminase (ADA) as a versatile recognition/catalytic framework for driving transient allosterically AD-stabilized DNAzyme circuits or dissipative AD-stabilized constitutional dynamic networks. In addition, the AD/ADA-driven transient frameworks are integrated into liposome assemblies as protocell models. Functionalized liposomes carrying allosterically ATP-stabilized DNAzymes cleaving EGR-1 mRNA are fused with MCF-7 breast cancer cells, demonstrating effective gene therapy and selective apoptosis of cancer cells.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.