具有同调积码的快速并行逻辑计算

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Qian Xu, Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Liang Jiang
{"title":"具有同调积码的快速并行逻辑计算","authors":"Qian Xu, Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Liang Jiang","doi":"10.1103/physrevx.15.021065","DOIUrl":null,"url":null,"abstract":"Quantum error correction is necessary to perform large-scale quantum computation but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical s between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing k</a:mi></a:math>-qubit Greenberger-Horne-Zeilinger states and distilling or teleporting <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>k</c:mi></c:math> magic states with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>O</e:mi><e:mo stretchy=\"false\">(</e:mo><e:mn>1</e:mn><e:mo stretchy=\"false\">)</e:mo></e:math> space overhead in <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>O</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mn>1</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>O</m:mi><m:mo stretchy=\"false\">(</m:mo><m:msqrt><m:mi>k</m:mi></m:msqrt><m:mi>log</m:mi><m:mi>k</m:mi><m:mo stretchy=\"false\">)</m:mo></m:math> logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"20 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Parallelizable Logical Computation with Homological Product Codes\",\"authors\":\"Qian Xu, Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, Liang Jiang\",\"doi\":\"10.1103/physrevx.15.021065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum error correction is necessary to perform large-scale quantum computation but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical s between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing k</a:mi></a:math>-qubit Greenberger-Horne-Zeilinger states and distilling or teleporting <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mi>k</c:mi></c:math> magic states with <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>O</e:mi><e:mo stretchy=\\\"false\\\">(</e:mo><e:mn>1</e:mn><e:mo stretchy=\\\"false\\\">)</e:mo></e:math> space overhead in <i:math xmlns:i=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><i:mi>O</i:mi><i:mo stretchy=\\\"false\\\">(</i:mo><i:mn>1</i:mn><i:mo stretchy=\\\"false\\\">)</i:mo></i:math> and <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>O</m:mi><m:mo stretchy=\\\"false\\\">(</m:mo><m:msqrt><m:mi>k</m:mi></m:msqrt><m:mi>log</m:mi><m:mi>k</m:mi><m:mo stretchy=\\\"false\\\">)</m:mo></m:math> logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.021065\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021065","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子纠错是进行大规模量子计算的必要条件,但在空间和时间上都需要极大的开销。高速率量子低密度奇偶校验(qLDPC)码有望减少量子比特数,但在保持低空间成本的同时进行计算需要操作序列化和额外的时间成本。在这项工作中,我们为qLDPC代码设计了快速且可并行的逻辑门,并演示了它们在关键算法子程序(如量子加法器)中的实用性。我们的门器件利用数据qLDPC码和适当构造的辅助码之间的横向逻辑s在数据逻辑量子位上执行并行泡利积测量(PPMs)。对于超图积码,我们证明了可以通过简单地修改数据码的基本经典码来构造辅助码,从而在逻辑量子比特的子网格上实现并行PPMs,并且具有比现有方案更低的时空成本,用于一类重要的电路。推广到3D和4D同构产品代码进一步特征快速PPMs在恒定深度。虽然之前对qLDPC代码的研究主要集中在单个逻辑门上,但我们通过扩展的本地qLDPC代码操作集开始了容错编译的研究,构建了用于准备k-量子位greenberger - horn - zeilinger状态的算法原语,并分别在O(1)和O(klogk)逻辑循环中以O(1)空间开销提取或传送k个魔法状态。我们进一步将其推广到关键的算法子程序,展示了使用并行操作的量子加法器的有效实现。我们的结构与可重构架构(如中性原子阵列)自然兼容,为低空间和时间开销的大规模量子计算铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Parallelizable Logical Computation with Homological Product Codes
Quantum error correction is necessary to perform large-scale quantum computation but requires extremely large overheads in both space and time. High-rate quantum low-density-parity-check (qLDPC) codes promise a route to reduce qubit numbers, but performing computation while maintaining low space cost has required serialization of operations and extra time costs. In this work, we design fast and parallelizable logical gates for qLDPC codes and demonstrate their utility for key algorithmic subroutines such as the quantum adder. Our gate gadgets utilize transversal logical s between a data qLDPC code and a suitably constructed ancilla code to perform parallel Pauli product measurements (PPMs) on the data logical qubits. For hypergraph product codes, we show that the ancilla can be constructed by simply modifying the base classical codes of the data code, achieving parallel PPMs on a subgrid of the logical qubits with a lower space-time cost than existing schemes for an important class of circuits. Generalizations to 3D and 4D homological product codes further feature fast PPMs in constant depth. While prior work on qLDPC codes has focused on individual logical gates, we initiate the study of fault-tolerant compilation with our expanded set of native qLDPC code operations, constructing algorithmic primitives for preparing k-qubit Greenberger-Horne-Zeilinger states and distilling or teleporting k magic states with O(1) space overhead in O(1) and O(klogk) logical cycles, respectively. We further generalize this to key algorithmic subroutines, demonstrating the efficient implementation of quantum adders using parallel operations. Our constructions are naturally compatible with reconfigurable architectures such as neutral atom arrays, paving the way to large-scale quantum computation with low space and time overheads. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信