{"title":"氧还原反应的双原子催化剂:反应条件下原子结构的揭示。","authors":"Courtney Brea,Guoxiang Hu","doi":"10.1021/jacs.5c04776","DOIUrl":null,"url":null,"abstract":"Metal-nitrogen-carbon (M-N-C, M = Mn, Fe, Co, Ni, Cu, Zn, and Pt) dual-atom catalysts (DACs) show great potential for the oxygen reduction reaction (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). During catalytic reactions, multiple reactants and intermediates interact with the active sites, yet understanding their dynamic structural evolution under the operating conditions remains challenging. In this study, we analyze 186 heteronuclear FeM-N-C DACs using ab initio thermodynamic phase diagrams and find that OH-ligated structures become predominant at higher applied potentials. This indicates that catalytic activity is governed by electrochemically modified metal sites rather than by the bare structures. We further investigate the catalytic mechanism of these ligated structures and reveal that the ORR limiting potential can be efficiently predicted from the phase diagrams. Among the 186 DACs studied, 29 were found to outperform Pt-based catalysts, with FeCo-N-C DACs demonstrating the highest activity. Our computational predictions align well with experimental observations, highlighting the crucial role of dynamic structural changes under reaction conditions in enhancing the electrocatalytic performance of DACs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"57 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Atom Catalysts for the Oxygen Reduction Reaction: Unraveling Atomic Structures under Reaction Conditions.\",\"authors\":\"Courtney Brea,Guoxiang Hu\",\"doi\":\"10.1021/jacs.5c04776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-nitrogen-carbon (M-N-C, M = Mn, Fe, Co, Ni, Cu, Zn, and Pt) dual-atom catalysts (DACs) show great potential for the oxygen reduction reaction (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). During catalytic reactions, multiple reactants and intermediates interact with the active sites, yet understanding their dynamic structural evolution under the operating conditions remains challenging. In this study, we analyze 186 heteronuclear FeM-N-C DACs using ab initio thermodynamic phase diagrams and find that OH-ligated structures become predominant at higher applied potentials. This indicates that catalytic activity is governed by electrochemically modified metal sites rather than by the bare structures. We further investigate the catalytic mechanism of these ligated structures and reveal that the ORR limiting potential can be efficiently predicted from the phase diagrams. Among the 186 DACs studied, 29 were found to outperform Pt-based catalysts, with FeCo-N-C DACs demonstrating the highest activity. Our computational predictions align well with experimental observations, highlighting the crucial role of dynamic structural changes under reaction conditions in enhancing the electrocatalytic performance of DACs.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c04776\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c04776","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual-Atom Catalysts for the Oxygen Reduction Reaction: Unraveling Atomic Structures under Reaction Conditions.
Metal-nitrogen-carbon (M-N-C, M = Mn, Fe, Co, Ni, Cu, Zn, and Pt) dual-atom catalysts (DACs) show great potential for the oxygen reduction reaction (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). During catalytic reactions, multiple reactants and intermediates interact with the active sites, yet understanding their dynamic structural evolution under the operating conditions remains challenging. In this study, we analyze 186 heteronuclear FeM-N-C DACs using ab initio thermodynamic phase diagrams and find that OH-ligated structures become predominant at higher applied potentials. This indicates that catalytic activity is governed by electrochemically modified metal sites rather than by the bare structures. We further investigate the catalytic mechanism of these ligated structures and reveal that the ORR limiting potential can be efficiently predicted from the phase diagrams. Among the 186 DACs studied, 29 were found to outperform Pt-based catalysts, with FeCo-N-C DACs demonstrating the highest activity. Our computational predictions align well with experimental observations, highlighting the crucial role of dynamic structural changes under reaction conditions in enhancing the electrocatalytic performance of DACs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.