利用大型语言模型增强基因集过表示分析。

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-03-13 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf054
Jiqing Zhu, Rebecca Y Wang, Xiaoting Wang, Ricardo Azevedo, Alexander Moreno, Julia A Kuhn, Zia Khan
{"title":"利用大型语言模型增强基因集过表示分析。","authors":"Jiqing Zhu, Rebecca Y Wang, Xiaoting Wang, Ricardo Azevedo, Alexander Moreno, Julia A Kuhn, Zia Khan","doi":"10.1093/bioadv/vbaf054","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Gene set overrepresentation analysis (ORA) is widely used to interpret high-throughput transcriptomics and proteomics data, but traditional methods rely on human-curated gene set databases that lack flexibility.</p><p><strong>Results: </strong>We introduce <i>llm2geneset</i>, a framework that leverages large language models (LLMs) to dynamically generate gene set databases tailored to input query genes, such as differentially expressed genes and a biological context specified in natural language. These databases integrate with methods, such as ORA, to assign biological functions to input genes. Benchmarking against human-curated gene sets demonstrates that LLMs generate gene sets comparable in quality to those curated by humans. <i>llm2geneset</i> also identifies biological processes represented by input gene sets, outperforming traditional ORA and direct LLM prompting. Applying the framework to RNA-seq data from iPSC-derived microglia treated with a <i>TREM2</i> agonist highlights its potential for flexible, context-aware gene set generation and improved interpretation of high-throughput biological data.</p><p><strong>Availability and implementation: </strong><i>llm2geneset</i> is available as open source at https://github.com/Alector-BIO/llm2geneset and via a web interface at https://llm2geneset.streamlit.app.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf054"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093311/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing gene set overrepresentation analysis with large language models.\",\"authors\":\"Jiqing Zhu, Rebecca Y Wang, Xiaoting Wang, Ricardo Azevedo, Alexander Moreno, Julia A Kuhn, Zia Khan\",\"doi\":\"10.1093/bioadv/vbaf054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Gene set overrepresentation analysis (ORA) is widely used to interpret high-throughput transcriptomics and proteomics data, but traditional methods rely on human-curated gene set databases that lack flexibility.</p><p><strong>Results: </strong>We introduce <i>llm2geneset</i>, a framework that leverages large language models (LLMs) to dynamically generate gene set databases tailored to input query genes, such as differentially expressed genes and a biological context specified in natural language. These databases integrate with methods, such as ORA, to assign biological functions to input genes. Benchmarking against human-curated gene sets demonstrates that LLMs generate gene sets comparable in quality to those curated by humans. <i>llm2geneset</i> also identifies biological processes represented by input gene sets, outperforming traditional ORA and direct LLM prompting. Applying the framework to RNA-seq data from iPSC-derived microglia treated with a <i>TREM2</i> agonist highlights its potential for flexible, context-aware gene set generation and improved interpretation of high-throughput biological data.</p><p><strong>Availability and implementation: </strong><i>llm2geneset</i> is available as open source at https://github.com/Alector-BIO/llm2geneset and via a web interface at https://llm2geneset.streamlit.app.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf054\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093311/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:基因集过代表性分析(ORA)被广泛用于解释高通量转录组学和蛋白质组学数据,但传统方法依赖于人类管理的基因集数据库,缺乏灵活性。结果:我们引入了llm2geneset,这是一个利用大型语言模型(llm)来动态生成定制的基因集数据库的框架,用于输入查询基因,如差异表达基因和自然语言指定的生物背景。这些数据库与ORA等方法相结合,将生物功能分配给输入基因。对人类策划的基因集进行基准测试表明,法学硕士产生的基因集在质量上与人类策划的基因集相当。llm2geneset还识别了由输入基因集代表的生物过程,优于传统的ORA和直接LLM提示。将该框架应用于经TREM2激动剂处理的ipsc衍生小胶质细胞的RNA-seq数据,突出了其灵活、上下文感知基因集生成和改进高通量生物学数据解释的潜力。可用性和实现:llm2geneset作为开放源代码可在https://github.com/Alector-BIO/llm2geneset上获得,也可通过web界面在https://llm2geneset.streamlit.app上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing gene set overrepresentation analysis with large language models.

Motivation: Gene set overrepresentation analysis (ORA) is widely used to interpret high-throughput transcriptomics and proteomics data, but traditional methods rely on human-curated gene set databases that lack flexibility.

Results: We introduce llm2geneset, a framework that leverages large language models (LLMs) to dynamically generate gene set databases tailored to input query genes, such as differentially expressed genes and a biological context specified in natural language. These databases integrate with methods, such as ORA, to assign biological functions to input genes. Benchmarking against human-curated gene sets demonstrates that LLMs generate gene sets comparable in quality to those curated by humans. llm2geneset also identifies biological processes represented by input gene sets, outperforming traditional ORA and direct LLM prompting. Applying the framework to RNA-seq data from iPSC-derived microglia treated with a TREM2 agonist highlights its potential for flexible, context-aware gene set generation and improved interpretation of high-throughput biological data.

Availability and implementation: llm2geneset is available as open source at https://github.com/Alector-BIO/llm2geneset and via a web interface at https://llm2geneset.streamlit.app.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信