{"title":"HTLV-2和HIV-1合并感染的宿主内动力学与延迟。","authors":"A M Elaiw, E A Almohaimeed","doi":"10.1080/17513758.2025.2506536","DOIUrl":null,"url":null,"abstract":"<p><p>This paper formulates a mathematical model for the co-infection of HTLV-2 and HIV-1 with latent reservoirs, four types of distributed-time delays and HIV-1-specific B cells. We establish that the solutions remain bounded and nonnegative, identify the system's steady states, and derive sufficient conditions ensuring both their existence and global asymptotic stability. The system's global stability is confirmed using Lyapunov's method. We provide numerical simulations to support the stability results. Sensitivity analysis of basic reproduction numbers of HTLV-2 mono-infection (<math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math>) and HIV-1 mono-infection (<math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math>) is conducted. We examine how time delays influence the interaction between HIV-1 and HTLV-2. Including delay terms in the model reflects the influence of antiviral treatments, which help decrease <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math>, thus limiting the spread of infection. This highlights the potential for designing therapies that prolong delay period. Incorporating such delays improves model precision and supports more effective evaluation of treatment strategies.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"19 1","pages":"2506536"},"PeriodicalIF":1.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay.\",\"authors\":\"A M Elaiw, E A Almohaimeed\",\"doi\":\"10.1080/17513758.2025.2506536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper formulates a mathematical model for the co-infection of HTLV-2 and HIV-1 with latent reservoirs, four types of distributed-time delays and HIV-1-specific B cells. We establish that the solutions remain bounded and nonnegative, identify the system's steady states, and derive sufficient conditions ensuring both their existence and global asymptotic stability. The system's global stability is confirmed using Lyapunov's method. We provide numerical simulations to support the stability results. Sensitivity analysis of basic reproduction numbers of HTLV-2 mono-infection (<math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math>) and HIV-1 mono-infection (<math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math>) is conducted. We examine how time delays influence the interaction between HIV-1 and HTLV-2. Including delay terms in the model reflects the influence of antiviral treatments, which help decrease <math><msub><mi>R</mi><mrow><mn>1</mn></mrow></msub></math> and <math><msub><mi>R</mi><mrow><mn>2</mn></mrow></msub></math>, thus limiting the spread of infection. This highlights the potential for designing therapies that prolong delay period. Incorporating such delays improves model precision and supports more effective evaluation of treatment strategies.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"19 1\",\"pages\":\"2506536\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2025.2506536\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2025.2506536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Within-host dynamics of HTLV-2 and HIV-1 co-infection with delay.
This paper formulates a mathematical model for the co-infection of HTLV-2 and HIV-1 with latent reservoirs, four types of distributed-time delays and HIV-1-specific B cells. We establish that the solutions remain bounded and nonnegative, identify the system's steady states, and derive sufficient conditions ensuring both their existence and global asymptotic stability. The system's global stability is confirmed using Lyapunov's method. We provide numerical simulations to support the stability results. Sensitivity analysis of basic reproduction numbers of HTLV-2 mono-infection () and HIV-1 mono-infection () is conducted. We examine how time delays influence the interaction between HIV-1 and HTLV-2. Including delay terms in the model reflects the influence of antiviral treatments, which help decrease and , thus limiting the spread of infection. This highlights the potential for designing therapies that prolong delay period. Incorporating such delays improves model precision and supports more effective evaluation of treatment strategies.
期刊介绍:
Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.