Lijun Ma, Shuang Luan, Nguyen Phuong Dang, Benjamin Ziemer, Steve Braunstein, Michael McDermott, Cheng Yu, Gabriel Zada, Eric L Chang
{"title":"点扫描共聚焦光子束用于低分割脑放射外科。","authors":"Lijun Ma, Shuang Luan, Nguyen Phuong Dang, Benjamin Ziemer, Steve Braunstein, Michael McDermott, Cheng Yu, Gabriel Zada, Eric L Chang","doi":"10.1177/15330338251342873","DOIUrl":null,"url":null,"abstract":"<p><p>IntroductionStereotactic radiosurgery (SRS) has been broadly used to treat brain tumors. In this study, a dose kernel-based spot scanning (DKSC) treatment delivery has been developed for hypofractionated brain SRS.MethodsDKSC treatments employs hundreds of confocal photon dose kernels. For such a delivery, a single continuous scanning path was first mapped within a 3D target volume, and then a series of dose kernels of variable sizes, shapes and beam weights were placed and then optimized along the path to produce highly conformal dose distributions. For implementation of DKSC delivery in a clinical setting, we specifically employed the Leksell Gamma Knife (LGK) system, where it is considered as the gold standard of modern SRS treatments.ResultsDKSC was successfully implemented for a patient treatment for the first time. General methodology as well as specific workflow and treatment planning caveats of implementing DKSC for the LGK is reported. To highlight the novelty of DKSC, we also compared DKSC against the conventional LGK-SRS treatment including its latest treatment planning optimization software.ConclusionDKSC has been demonstrated to be technically feasible, clinically implementable, and uniquely advantageous for hypofractionated brain SRS. Further studies are warranted toward testing DKSC for variable SRS modalities, different disease sites including extra-cranial lesions.</p>","PeriodicalId":22203,"journal":{"name":"Technology in Cancer Research & Treatment","volume":"24 ","pages":"15330338251342873"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099129/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spot-Scanning Confocal Photon Beams for Hypofractionated Brain Radiosurgery.\",\"authors\":\"Lijun Ma, Shuang Luan, Nguyen Phuong Dang, Benjamin Ziemer, Steve Braunstein, Michael McDermott, Cheng Yu, Gabriel Zada, Eric L Chang\",\"doi\":\"10.1177/15330338251342873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>IntroductionStereotactic radiosurgery (SRS) has been broadly used to treat brain tumors. In this study, a dose kernel-based spot scanning (DKSC) treatment delivery has been developed for hypofractionated brain SRS.MethodsDKSC treatments employs hundreds of confocal photon dose kernels. For such a delivery, a single continuous scanning path was first mapped within a 3D target volume, and then a series of dose kernels of variable sizes, shapes and beam weights were placed and then optimized along the path to produce highly conformal dose distributions. For implementation of DKSC delivery in a clinical setting, we specifically employed the Leksell Gamma Knife (LGK) system, where it is considered as the gold standard of modern SRS treatments.ResultsDKSC was successfully implemented for a patient treatment for the first time. General methodology as well as specific workflow and treatment planning caveats of implementing DKSC for the LGK is reported. To highlight the novelty of DKSC, we also compared DKSC against the conventional LGK-SRS treatment including its latest treatment planning optimization software.ConclusionDKSC has been demonstrated to be technically feasible, clinically implementable, and uniquely advantageous for hypofractionated brain SRS. Further studies are warranted toward testing DKSC for variable SRS modalities, different disease sites including extra-cranial lesions.</p>\",\"PeriodicalId\":22203,\"journal\":{\"name\":\"Technology in Cancer Research & Treatment\",\"volume\":\"24 \",\"pages\":\"15330338251342873\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12099129/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology in Cancer Research & Treatment\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/15330338251342873\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology in Cancer Research & Treatment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15330338251342873","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Spot-Scanning Confocal Photon Beams for Hypofractionated Brain Radiosurgery.
IntroductionStereotactic radiosurgery (SRS) has been broadly used to treat brain tumors. In this study, a dose kernel-based spot scanning (DKSC) treatment delivery has been developed for hypofractionated brain SRS.MethodsDKSC treatments employs hundreds of confocal photon dose kernels. For such a delivery, a single continuous scanning path was first mapped within a 3D target volume, and then a series of dose kernels of variable sizes, shapes and beam weights were placed and then optimized along the path to produce highly conformal dose distributions. For implementation of DKSC delivery in a clinical setting, we specifically employed the Leksell Gamma Knife (LGK) system, where it is considered as the gold standard of modern SRS treatments.ResultsDKSC was successfully implemented for a patient treatment for the first time. General methodology as well as specific workflow and treatment planning caveats of implementing DKSC for the LGK is reported. To highlight the novelty of DKSC, we also compared DKSC against the conventional LGK-SRS treatment including its latest treatment planning optimization software.ConclusionDKSC has been demonstrated to be technically feasible, clinically implementable, and uniquely advantageous for hypofractionated brain SRS. Further studies are warranted toward testing DKSC for variable SRS modalities, different disease sites including extra-cranial lesions.
期刊介绍:
Technology in Cancer Research & Treatment (TCRT) is a JCR-ranked, broad-spectrum, open access, peer-reviewed publication whose aim is to provide researchers and clinicians with a platform to share and discuss developments in the prevention, diagnosis, treatment, and monitoring of cancer.