{"title":"肿瘤相关巨噬细胞来源的外泌体通过靶向m6a修饰的FOXD1调节sh -髓母细胞瘤的免疫治疗敏感性。","authors":"Yantao Liu, Yu Peng, Chen Song, Zongran Liu, Xiaolong Yang, Shuqing Bian, Xiaolin Xiao, Haishuang Li, Jing Wang, Ziwen Sun, Xiaodan Liu, Bao Yang, David J H Shih, Jianyuan Luo, Hui Liang, Qing Chang","doi":"10.1093/neuonc/noaf123","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medulloblastoma (MB) is the most common pediatric malignant brain tumor. Infiltration of tumor-associated macrophages (TAMs) and m6A modification of RNA are correlated with poor prognosis and tumor progression in the Sonic Hedgehog (SHH) subtype (SHH-MB). However, the relationship between TAMs infiltration in SHH-MB and m6A modification status during tumor progression remains unclear.</p><p><strong>Methods: </strong>Expression of m6A modification-related proteins was assessed in 40 cases of SHH-MB. Genes affected by TAM-derived exosomes were identified with methylated RNA immunoprecipitation sequencing. Mechanisms of m6A modification of FOXD1 were evaluated and combinatorial treatment with AAV2/9-shFOXD1 and PD-1 inhibitors was investigated in the NeuroD2:SmoA1 mouse model.</p><p><strong>Results: </strong>TAMs infiltration led to decreased METTL14 expression, which was mediated by TAM-derived exosomes containing METTL14-specific microRNAs. In turn, this led to lower levels of m6A modifications. Through a screen, FOXD1 was identified as a critical downstream target of TAM-derived exosomes, and its expression level was correlated with poor prognosis in SHH-MBs. Importantly, knockdown of FOXD1 in SHH-MB cells significantly promoted the release of chemokines CXCL10/11, resulting in CD8+ T cell recruitment. Furthermore, treatment with AAV2/9-shFOXD1 significantly enhanced the antitumor effect of the PD-1 inhibitor in transgenic SHH-MB mice.</p><p><strong>Conclusion: </strong>Our study revealed for the first time that TAM-derived exosomes modulate m6A levels in SHH-MB, which promotes tumor progression via FOXD1. We identified FOXD1 as a novel therapeutic target whose inhibition sensitizes SHH-MB to immune checkpoint blockade.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor-associated macrophage-derived exosomes modulate the immunotherapeutic sensitivity of SHH-medulloblastoma by targeting m6A-modified FOXD1.\",\"authors\":\"Yantao Liu, Yu Peng, Chen Song, Zongran Liu, Xiaolong Yang, Shuqing Bian, Xiaolin Xiao, Haishuang Li, Jing Wang, Ziwen Sun, Xiaodan Liu, Bao Yang, David J H Shih, Jianyuan Luo, Hui Liang, Qing Chang\",\"doi\":\"10.1093/neuonc/noaf123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medulloblastoma (MB) is the most common pediatric malignant brain tumor. Infiltration of tumor-associated macrophages (TAMs) and m6A modification of RNA are correlated with poor prognosis and tumor progression in the Sonic Hedgehog (SHH) subtype (SHH-MB). However, the relationship between TAMs infiltration in SHH-MB and m6A modification status during tumor progression remains unclear.</p><p><strong>Methods: </strong>Expression of m6A modification-related proteins was assessed in 40 cases of SHH-MB. Genes affected by TAM-derived exosomes were identified with methylated RNA immunoprecipitation sequencing. Mechanisms of m6A modification of FOXD1 were evaluated and combinatorial treatment with AAV2/9-shFOXD1 and PD-1 inhibitors was investigated in the NeuroD2:SmoA1 mouse model.</p><p><strong>Results: </strong>TAMs infiltration led to decreased METTL14 expression, which was mediated by TAM-derived exosomes containing METTL14-specific microRNAs. In turn, this led to lower levels of m6A modifications. Through a screen, FOXD1 was identified as a critical downstream target of TAM-derived exosomes, and its expression level was correlated with poor prognosis in SHH-MBs. Importantly, knockdown of FOXD1 in SHH-MB cells significantly promoted the release of chemokines CXCL10/11, resulting in CD8+ T cell recruitment. Furthermore, treatment with AAV2/9-shFOXD1 significantly enhanced the antitumor effect of the PD-1 inhibitor in transgenic SHH-MB mice.</p><p><strong>Conclusion: </strong>Our study revealed for the first time that TAM-derived exosomes modulate m6A levels in SHH-MB, which promotes tumor progression via FOXD1. We identified FOXD1 as a novel therapeutic target whose inhibition sensitizes SHH-MB to immune checkpoint blockade.</p>\",\"PeriodicalId\":19377,\"journal\":{\"name\":\"Neuro-oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuro-oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/neuonc/noaf123\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf123","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Tumor-associated macrophage-derived exosomes modulate the immunotherapeutic sensitivity of SHH-medulloblastoma by targeting m6A-modified FOXD1.
Background: Medulloblastoma (MB) is the most common pediatric malignant brain tumor. Infiltration of tumor-associated macrophages (TAMs) and m6A modification of RNA are correlated with poor prognosis and tumor progression in the Sonic Hedgehog (SHH) subtype (SHH-MB). However, the relationship between TAMs infiltration in SHH-MB and m6A modification status during tumor progression remains unclear.
Methods: Expression of m6A modification-related proteins was assessed in 40 cases of SHH-MB. Genes affected by TAM-derived exosomes were identified with methylated RNA immunoprecipitation sequencing. Mechanisms of m6A modification of FOXD1 were evaluated and combinatorial treatment with AAV2/9-shFOXD1 and PD-1 inhibitors was investigated in the NeuroD2:SmoA1 mouse model.
Results: TAMs infiltration led to decreased METTL14 expression, which was mediated by TAM-derived exosomes containing METTL14-specific microRNAs. In turn, this led to lower levels of m6A modifications. Through a screen, FOXD1 was identified as a critical downstream target of TAM-derived exosomes, and its expression level was correlated with poor prognosis in SHH-MBs. Importantly, knockdown of FOXD1 in SHH-MB cells significantly promoted the release of chemokines CXCL10/11, resulting in CD8+ T cell recruitment. Furthermore, treatment with AAV2/9-shFOXD1 significantly enhanced the antitumor effect of the PD-1 inhibitor in transgenic SHH-MB mice.
Conclusion: Our study revealed for the first time that TAM-derived exosomes modulate m6A levels in SHH-MB, which promotes tumor progression via FOXD1. We identified FOXD1 as a novel therapeutic target whose inhibition sensitizes SHH-MB to immune checkpoint blockade.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.