Yuhang Wang, Sudeep Ghimire, Ashutosh Mangalam, Zizhen Kang
{"title":"基于ribotag的RNA分析揭示了自身免疫性脑脊髓炎中少突胶质细胞谱系特异性炎症:对发病机制的影响。","authors":"Yuhang Wang, Sudeep Ghimire, Ashutosh Mangalam, Zizhen Kang","doi":"10.1186/s12974-025-03463-x","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendroglial lineage cells (OLCs) are essential for myelination, remyelination and neuronal metabolic support, but recent evidence suggests they also play active roles in neuroinflammation. This study aimed to identify the inflammatory translatome of OLCs during the onset of experimental autoimmune encephalomyelitis (EAE), a widely used model for Multiple Sclerosis (MS), using RiboTag-based RNA sequencing. We crossed RiboTag mice with Olig2-Cre mice to obtain strain-specific expression of HA-tagged ribosomal protein Rpl22 in OLCs, enabling the isolation of ribosome-associated mRNA from these cells for sequencing by using HA beads. Compared to controls, 1,556 genes were upregulated and 683 were downregulated in EAE OLCs. Gene enrichment revealed elevated immune-related pathways, including cytokine signaling, interferon responses and antigen presentation, whereas downregulated genes were associated with myelination and neuronal development. Notably, significant expression of cytokines/chemokines and their receptors was detected in OLCs. Further investigations focused on the role of IFNGR and IFNAR in EAE pathogenesis. IFN-γ signaling in OLCs exacerbated EAE pathogenesis by enhancing antigen processing, presentation, and chemokine production (e.g., Ccl2, Ccl7). In contrast, IFN-β signaling appeared less critical. These findings highlight the inflammatory role of OLCs in EAE, suggesting OLCs as a potential therapeutic target for mitigating neuroinflammation in MS and related disorders.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"135"},"PeriodicalIF":9.3000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093676/pdf/","citationCount":"0","resultStr":"{\"title\":\"RiboTag-based RNA profiling uncovers oligodendroglial lineage-specific inflammation in autoimmune encephalomyelitis: implications for pathogenesis.\",\"authors\":\"Yuhang Wang, Sudeep Ghimire, Ashutosh Mangalam, Zizhen Kang\",\"doi\":\"10.1186/s12974-025-03463-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oligodendroglial lineage cells (OLCs) are essential for myelination, remyelination and neuronal metabolic support, but recent evidence suggests they also play active roles in neuroinflammation. This study aimed to identify the inflammatory translatome of OLCs during the onset of experimental autoimmune encephalomyelitis (EAE), a widely used model for Multiple Sclerosis (MS), using RiboTag-based RNA sequencing. We crossed RiboTag mice with Olig2-Cre mice to obtain strain-specific expression of HA-tagged ribosomal protein Rpl22 in OLCs, enabling the isolation of ribosome-associated mRNA from these cells for sequencing by using HA beads. Compared to controls, 1,556 genes were upregulated and 683 were downregulated in EAE OLCs. Gene enrichment revealed elevated immune-related pathways, including cytokine signaling, interferon responses and antigen presentation, whereas downregulated genes were associated with myelination and neuronal development. Notably, significant expression of cytokines/chemokines and their receptors was detected in OLCs. Further investigations focused on the role of IFNGR and IFNAR in EAE pathogenesis. IFN-γ signaling in OLCs exacerbated EAE pathogenesis by enhancing antigen processing, presentation, and chemokine production (e.g., Ccl2, Ccl7). In contrast, IFN-β signaling appeared less critical. These findings highlight the inflammatory role of OLCs in EAE, suggesting OLCs as a potential therapeutic target for mitigating neuroinflammation in MS and related disorders.</p>\",\"PeriodicalId\":16577,\"journal\":{\"name\":\"Journal of Neuroinflammation\",\"volume\":\"22 1\",\"pages\":\"135\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroinflammation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12974-025-03463-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03463-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
RiboTag-based RNA profiling uncovers oligodendroglial lineage-specific inflammation in autoimmune encephalomyelitis: implications for pathogenesis.
Oligodendroglial lineage cells (OLCs) are essential for myelination, remyelination and neuronal metabolic support, but recent evidence suggests they also play active roles in neuroinflammation. This study aimed to identify the inflammatory translatome of OLCs during the onset of experimental autoimmune encephalomyelitis (EAE), a widely used model for Multiple Sclerosis (MS), using RiboTag-based RNA sequencing. We crossed RiboTag mice with Olig2-Cre mice to obtain strain-specific expression of HA-tagged ribosomal protein Rpl22 in OLCs, enabling the isolation of ribosome-associated mRNA from these cells for sequencing by using HA beads. Compared to controls, 1,556 genes were upregulated and 683 were downregulated in EAE OLCs. Gene enrichment revealed elevated immune-related pathways, including cytokine signaling, interferon responses and antigen presentation, whereas downregulated genes were associated with myelination and neuronal development. Notably, significant expression of cytokines/chemokines and their receptors was detected in OLCs. Further investigations focused on the role of IFNGR and IFNAR in EAE pathogenesis. IFN-γ signaling in OLCs exacerbated EAE pathogenesis by enhancing antigen processing, presentation, and chemokine production (e.g., Ccl2, Ccl7). In contrast, IFN-β signaling appeared less critical. These findings highlight the inflammatory role of OLCs in EAE, suggesting OLCs as a potential therapeutic target for mitigating neuroinflammation in MS and related disorders.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.