Sama Ayoub, Maryam Arabi, Yousef Al-Najjar, Ibrahim Laswi, Tiago F Outeiro, Ali Chaari
{"title":"糖基化在阿尔茨海默病和2型糖尿病中的作用:双重药物治疗干预的前景。","authors":"Sama Ayoub, Maryam Arabi, Yousef Al-Najjar, Ibrahim Laswi, Tiago F Outeiro, Ali Chaari","doi":"10.1007/s12035-025-05051-9","DOIUrl":null,"url":null,"abstract":"<p><p>As global life expectancy increases, the prevalence of neurodegenerative diseases like Alzheimer's disease (AD) continues to rise. Since therapeutic options are minimal, a deeper understanding of the pathophysiology is essential for improved diagnosis and treatments. AD is marked by the aggregation of Aβ proteins, tau hyperphosphorylation, and progressive neuronal loss, though its precise origins remain poorly understood. Meanwhile, type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia, leading to the formation of advanced glycation end products (AGEs), which are implicated in tissue damage and neurotoxicity. These AGEs can be resistant to proteolysis and, therefore, accumulate, exacerbating AD pathology and accelerating neurodegeneration. Insulin resistance, a hallmark of T2DM, further complicates AD pathogenesis by promoting tau hyperphosphorylation and Aβ plaque accumulation. Additionally, gut microbiome dysbiosis in T2DM fosters AGE accumulation and neuroinflammation, underscoring the intricate relationship between metabolic disorders, gut health, and neurodegenerative processes. This complex interplay presents both a challenge and a potential avenue for therapeutic intervention. Emerging evidence suggests that antidiabetic medications may offer cognitive benefits in AD, as well as in other neurodegenerative conditions, pointing to a shared pathophysiology. Thus, we posit that targeting AGEs, insulin signaling, and gut microbiota dynamics presents promising opportunities for innovative treatment approaches in AD and T2DM.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"14859-14882"},"PeriodicalIF":4.3000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glycation in Alzheimer's Disease and Type 2 Diabetes: The Prospect of Dual Drug Approaches for Therapeutic Interventions.\",\"authors\":\"Sama Ayoub, Maryam Arabi, Yousef Al-Najjar, Ibrahim Laswi, Tiago F Outeiro, Ali Chaari\",\"doi\":\"10.1007/s12035-025-05051-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As global life expectancy increases, the prevalence of neurodegenerative diseases like Alzheimer's disease (AD) continues to rise. Since therapeutic options are minimal, a deeper understanding of the pathophysiology is essential for improved diagnosis and treatments. AD is marked by the aggregation of Aβ proteins, tau hyperphosphorylation, and progressive neuronal loss, though its precise origins remain poorly understood. Meanwhile, type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia, leading to the formation of advanced glycation end products (AGEs), which are implicated in tissue damage and neurotoxicity. These AGEs can be resistant to proteolysis and, therefore, accumulate, exacerbating AD pathology and accelerating neurodegeneration. Insulin resistance, a hallmark of T2DM, further complicates AD pathogenesis by promoting tau hyperphosphorylation and Aβ plaque accumulation. Additionally, gut microbiome dysbiosis in T2DM fosters AGE accumulation and neuroinflammation, underscoring the intricate relationship between metabolic disorders, gut health, and neurodegenerative processes. This complex interplay presents both a challenge and a potential avenue for therapeutic intervention. Emerging evidence suggests that antidiabetic medications may offer cognitive benefits in AD, as well as in other neurodegenerative conditions, pointing to a shared pathophysiology. Thus, we posit that targeting AGEs, insulin signaling, and gut microbiota dynamics presents promising opportunities for innovative treatment approaches in AD and T2DM.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"14859-14882\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-05051-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05051-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Glycation in Alzheimer's Disease and Type 2 Diabetes: The Prospect of Dual Drug Approaches for Therapeutic Interventions.
As global life expectancy increases, the prevalence of neurodegenerative diseases like Alzheimer's disease (AD) continues to rise. Since therapeutic options are minimal, a deeper understanding of the pathophysiology is essential for improved diagnosis and treatments. AD is marked by the aggregation of Aβ proteins, tau hyperphosphorylation, and progressive neuronal loss, though its precise origins remain poorly understood. Meanwhile, type 2 diabetes mellitus (T2DM) is characterized by chronic hyperglycemia, leading to the formation of advanced glycation end products (AGEs), which are implicated in tissue damage and neurotoxicity. These AGEs can be resistant to proteolysis and, therefore, accumulate, exacerbating AD pathology and accelerating neurodegeneration. Insulin resistance, a hallmark of T2DM, further complicates AD pathogenesis by promoting tau hyperphosphorylation and Aβ plaque accumulation. Additionally, gut microbiome dysbiosis in T2DM fosters AGE accumulation and neuroinflammation, underscoring the intricate relationship between metabolic disorders, gut health, and neurodegenerative processes. This complex interplay presents both a challenge and a potential avenue for therapeutic intervention. Emerging evidence suggests that antidiabetic medications may offer cognitive benefits in AD, as well as in other neurodegenerative conditions, pointing to a shared pathophysiology. Thus, we posit that targeting AGEs, insulin signaling, and gut microbiota dynamics presents promising opportunities for innovative treatment approaches in AD and T2DM.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.