{"title":"LncRNA RP11-34D15.2利用miR-223促进PGC-1a/Irisin信号通路,有助于肥胖儿童FFA和胰岛素抵抗的增加。","authors":"Shuang Guo, Mengnan Lu, Yuesheng Liu, Hongai Zhang, Biyao Lian, Yanfeng Xiao, Chunyan Yin","doi":"10.1530/EC-25-0028","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The global surge in pediatric obesity is closely linked to insulin resistance (IR) and type 2 diabetes, where adipose tissue free fatty acid (FFA) overload and mitochondrial dysfunction play pivotal roles. Long non-coding RNAs (lncRNAs) are emerging regulators of metabolic diseases, but their mechanistic contributions to childhood obesity-associated IR remain underexplored.</p><p><strong>Objective: </strong>This study investigates whether lncRNA RP11-34D15.2 modulates FFA-induced IR through the miR-223/PGC-1α/irisin signaling axis in obese children.</p><p><strong>Methods: </strong>We analyzed serum FFA, insulin, irisin, and white adipose tissue (WAT) transcriptomes in 40 obese and 40 normal-weight children. Functional validation included dual-luciferase reporter assays, primary adipocyte models, and high-fat diet (HFD) mice treated with lncRNA-specific shRNA (n = 10 per group). Molecular interactions were verified via RNA immunoprecipitation and western blotting.</p><p><strong>Results: </strong>Obese children exhibited 2.1-fold higher FFA levels and HOMA-IR (P < 0.01), but 38% lower serum irisin compared to controls, with irisin inversely correlating with body fat percentage (r = -0.67, P = 0.003). lncRNA RP11-34D15.2 was downregulated by 4.3-fold in obese WAT and positively correlated with irisin expression (r = 0.603, P = 0.018). Mechanistic studies revealed that lncRNA directly binds miR-223 (RIP-seq fold enrichment = 5.2, P = 0.004), relieving miR-223-mediated suppression of PGC-1α. Overexpressing lncRNA in adipocytes increased PGC-1α (2.8-fold) and irisin (1.9-fold), upregulated mitochondrial genes (CPT-1: 3.1-fold; UCP-1: 2.4-fold, P < 0.01), and reduced extracellular FFA by 44%. In HFD mice, lncRNA knockdown exacerbated glucose intolerance (AUC increased 29%, P = 0.007), whereas irisin supplementation restored insulin sensitivity (P = 0.013).</p><p><strong>Conclusion: </strong>lncRNA RP11-34D15.2 functions as a ceRNA sponging miR-223 to activate PGC-1α/irisin-mediated mitochondrial β-oxidation and FFA clearance, identifying therapeutic targets for childhood obesity.</p>","PeriodicalId":11634,"journal":{"name":"Endocrine Connections","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152850/pdf/","citationCount":"0","resultStr":"{\"title\":\"lncRNA RP11-34D15.2 sponges miR-223 to promote the PGC-1α/irisin signaling pathway, contributing to increased FFA and insulin resistance in obese children.\",\"authors\":\"Shuang Guo, Mengnan Lu, Yuesheng Liu, Hongai Zhang, Biyao Lian, Yanfeng Xiao, Chunyan Yin\",\"doi\":\"10.1530/EC-25-0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The global surge in pediatric obesity is closely linked to insulin resistance (IR) and type 2 diabetes, where adipose tissue free fatty acid (FFA) overload and mitochondrial dysfunction play pivotal roles. Long non-coding RNAs (lncRNAs) are emerging regulators of metabolic diseases, but their mechanistic contributions to childhood obesity-associated IR remain underexplored.</p><p><strong>Objective: </strong>This study investigates whether lncRNA RP11-34D15.2 modulates FFA-induced IR through the miR-223/PGC-1α/irisin signaling axis in obese children.</p><p><strong>Methods: </strong>We analyzed serum FFA, insulin, irisin, and white adipose tissue (WAT) transcriptomes in 40 obese and 40 normal-weight children. Functional validation included dual-luciferase reporter assays, primary adipocyte models, and high-fat diet (HFD) mice treated with lncRNA-specific shRNA (n = 10 per group). Molecular interactions were verified via RNA immunoprecipitation and western blotting.</p><p><strong>Results: </strong>Obese children exhibited 2.1-fold higher FFA levels and HOMA-IR (P < 0.01), but 38% lower serum irisin compared to controls, with irisin inversely correlating with body fat percentage (r = -0.67, P = 0.003). lncRNA RP11-34D15.2 was downregulated by 4.3-fold in obese WAT and positively correlated with irisin expression (r = 0.603, P = 0.018). Mechanistic studies revealed that lncRNA directly binds miR-223 (RIP-seq fold enrichment = 5.2, P = 0.004), relieving miR-223-mediated suppression of PGC-1α. Overexpressing lncRNA in adipocytes increased PGC-1α (2.8-fold) and irisin (1.9-fold), upregulated mitochondrial genes (CPT-1: 3.1-fold; UCP-1: 2.4-fold, P < 0.01), and reduced extracellular FFA by 44%. In HFD mice, lncRNA knockdown exacerbated glucose intolerance (AUC increased 29%, P = 0.007), whereas irisin supplementation restored insulin sensitivity (P = 0.013).</p><p><strong>Conclusion: </strong>lncRNA RP11-34D15.2 functions as a ceRNA sponging miR-223 to activate PGC-1α/irisin-mediated mitochondrial β-oxidation and FFA clearance, identifying therapeutic targets for childhood obesity.</p>\",\"PeriodicalId\":11634,\"journal\":{\"name\":\"Endocrine Connections\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12152850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Endocrine Connections\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/EC-25-0028\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Connections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/EC-25-0028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
lncRNA RP11-34D15.2 sponges miR-223 to promote the PGC-1α/irisin signaling pathway, contributing to increased FFA and insulin resistance in obese children.
Background: The global surge in pediatric obesity is closely linked to insulin resistance (IR) and type 2 diabetes, where adipose tissue free fatty acid (FFA) overload and mitochondrial dysfunction play pivotal roles. Long non-coding RNAs (lncRNAs) are emerging regulators of metabolic diseases, but their mechanistic contributions to childhood obesity-associated IR remain underexplored.
Objective: This study investigates whether lncRNA RP11-34D15.2 modulates FFA-induced IR through the miR-223/PGC-1α/irisin signaling axis in obese children.
Methods: We analyzed serum FFA, insulin, irisin, and white adipose tissue (WAT) transcriptomes in 40 obese and 40 normal-weight children. Functional validation included dual-luciferase reporter assays, primary adipocyte models, and high-fat diet (HFD) mice treated with lncRNA-specific shRNA (n = 10 per group). Molecular interactions were verified via RNA immunoprecipitation and western blotting.
Results: Obese children exhibited 2.1-fold higher FFA levels and HOMA-IR (P < 0.01), but 38% lower serum irisin compared to controls, with irisin inversely correlating with body fat percentage (r = -0.67, P = 0.003). lncRNA RP11-34D15.2 was downregulated by 4.3-fold in obese WAT and positively correlated with irisin expression (r = 0.603, P = 0.018). Mechanistic studies revealed that lncRNA directly binds miR-223 (RIP-seq fold enrichment = 5.2, P = 0.004), relieving miR-223-mediated suppression of PGC-1α. Overexpressing lncRNA in adipocytes increased PGC-1α (2.8-fold) and irisin (1.9-fold), upregulated mitochondrial genes (CPT-1: 3.1-fold; UCP-1: 2.4-fold, P < 0.01), and reduced extracellular FFA by 44%. In HFD mice, lncRNA knockdown exacerbated glucose intolerance (AUC increased 29%, P = 0.007), whereas irisin supplementation restored insulin sensitivity (P = 0.013).
Conclusion: lncRNA RP11-34D15.2 functions as a ceRNA sponging miR-223 to activate PGC-1α/irisin-mediated mitochondrial β-oxidation and FFA clearance, identifying therapeutic targets for childhood obesity.
期刊介绍:
Endocrine Connections publishes original quality research and reviews in all areas of endocrinology, including papers that deal with non-classical tissues as source or targets of hormones and endocrine papers that have relevance to endocrine-related and intersecting disciplines and the wider biomedical community.