平面捕食-食饵系统奇异Hopf分岔的进一步稳定性判据。

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-05-01 DOI:10.1063/5.0244624
Jicai Huang, Shimin Li, Xiaoling Wang, Kuilin Wu
{"title":"平面捕食-食饵系统奇异Hopf分岔的进一步稳定性判据。","authors":"Jicai Huang, Shimin Li, Xiaoling Wang, Kuilin Wu","doi":"10.1063/5.0244624","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the singular Hopf bifurcation in predator-prey systems, where bifurcation occurs as the eigenvalues become singular when the singular perturbation parameter ε→0. In Krupa and Szmolyan [SIAM J. Math. Anal. (2001)], the first Lyapunov coefficient for singular Hopf bifurcation is given as L1(ε)=ε8(A+O(ε)), with the bifurcation being supercritical for A<0 and subcritical for A>0. As far as we know, there are no general results regarding the stability of singular Hopf bifurcation when A=0. This paper aims to address this gap for planar predator-prey systems. We present further stability criteria for singular Hopf bifurcation in planar predator-prey systems of Leslie and Gause types. Additionally, numerical simulations are conducted to support and validate our analytical findings.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Further stability criteria for singular Hopf bifurcation in planar predator-prey systems.\",\"authors\":\"Jicai Huang, Shimin Li, Xiaoling Wang, Kuilin Wu\",\"doi\":\"10.1063/5.0244624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate the singular Hopf bifurcation in predator-prey systems, where bifurcation occurs as the eigenvalues become singular when the singular perturbation parameter ε→0. In Krupa and Szmolyan [SIAM J. Math. Anal. (2001)], the first Lyapunov coefficient for singular Hopf bifurcation is given as L1(ε)=ε8(A+O(ε)), with the bifurcation being supercritical for A<0 and subcritical for A>0. As far as we know, there are no general results regarding the stability of singular Hopf bifurcation when A=0. This paper aims to address this gap for planar predator-prey systems. We present further stability criteria for singular Hopf bifurcation in planar predator-prey systems of Leslie and Gause types. Additionally, numerical simulations are conducted to support and validate our analytical findings.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0244624\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0244624","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了捕食者-猎物系统的奇异Hopf分岔问题,当奇异扰动参数ε→0时特征值变为奇异时,出现了分岔。在Krupa和Szmolyan [SIAM J. Math]。分析的。(2001)],奇异Hopf分岔的第一Lyapunov系数为L1(ε)=ε8(A+O(ε)),分岔对于A0是超临界的。就我们所知,当A=0时,关于Hopf奇异分岔的稳定性没有一般的结果。本文旨在解决平面捕食者-猎物系统的这一差距。进一步给出了Leslie型和Gause型平面捕食-食饵系统奇异Hopf分岔的稳定性判据。此外,还进行了数值模拟来支持和验证我们的分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further stability criteria for singular Hopf bifurcation in planar predator-prey systems.

In this paper, we investigate the singular Hopf bifurcation in predator-prey systems, where bifurcation occurs as the eigenvalues become singular when the singular perturbation parameter ε→0. In Krupa and Szmolyan [SIAM J. Math. Anal. (2001)], the first Lyapunov coefficient for singular Hopf bifurcation is given as L1(ε)=ε8(A+O(ε)), with the bifurcation being supercritical for A<0 and subcritical for A>0. As far as we know, there are no general results regarding the stability of singular Hopf bifurcation when A=0. This paper aims to address this gap for planar predator-prey systems. We present further stability criteria for singular Hopf bifurcation in planar predator-prey systems of Leslie and Gause types. Additionally, numerical simulations are conducted to support and validate our analytical findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信