PRMT1通过调节MYC蛋白的精氨酸甲基化修饰促进肝细胞癌的免疫逃逸。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-05-22 DOI:10.1080/15592294.2025.2509044
Han Zhou, Yang Wang, Dan Wang, Mei Zhang, Kaidi Wang, Chunhui Liu
{"title":"PRMT1通过调节MYC蛋白的精氨酸甲基化修饰促进肝细胞癌的免疫逃逸。","authors":"Han Zhou, Yang Wang, Dan Wang, Mei Zhang, Kaidi Wang, Chunhui Liu","doi":"10.1080/15592294.2025.2509044","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine methyltransferase 1 (PRMT1) is widely recognized as an oncogene in various cancers. However, its specific role and underlying mechanisms in hepatocellular carcinoma (HCC) remain insufficiently understood. This study investigated the function of PRMT1 in HCC development and immune evasion. A comprehensive approach combining database analysis (including TCGA, The Human Protein Atlas, Kaplan-Meier Plotter, and TIMER2.0), molecular techniques (such as RT-qPCR, Western blot analysis, and co-immunoprecipitation), cell-based assays (including MTT, colony formation, transwell, and T cell killing assays), and <i>in vivo</i> models was employed to explore PRMT1's role in HCC. The findings revealed a marked upregulation of PRMT1 in both HCC clinical samples and cell lines. Depletion of PRMT1 inhibited cell proliferation and immune evasion while reducing cell migration and invasion. Mechanistically, PRMT1 was shown to interact with MYC, facilitating its arginine methylation and enhancing its protein stability. Moreover, re-expression of MYC significantly reversed the anti-tumour effects associated with PRMT1 depletion. <i>In vivo</i> experiments further corroborated these results. Collectively, PRMT1 promotes HCC progression and immune escape by mediating ADMA methylation of MYC, thereby regulating its stability and expression.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2509044"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101584/pdf/","citationCount":"0","resultStr":"{\"title\":\"PRMT1 promotes immune escape in hepatocellular carcinoma by regulating arginine methylation modification of MYC protein.\",\"authors\":\"Han Zhou, Yang Wang, Dan Wang, Mei Zhang, Kaidi Wang, Chunhui Liu\",\"doi\":\"10.1080/15592294.2025.2509044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arginine methyltransferase 1 (PRMT1) is widely recognized as an oncogene in various cancers. However, its specific role and underlying mechanisms in hepatocellular carcinoma (HCC) remain insufficiently understood. This study investigated the function of PRMT1 in HCC development and immune evasion. A comprehensive approach combining database analysis (including TCGA, The Human Protein Atlas, Kaplan-Meier Plotter, and TIMER2.0), molecular techniques (such as RT-qPCR, Western blot analysis, and co-immunoprecipitation), cell-based assays (including MTT, colony formation, transwell, and T cell killing assays), and <i>in vivo</i> models was employed to explore PRMT1's role in HCC. The findings revealed a marked upregulation of PRMT1 in both HCC clinical samples and cell lines. Depletion of PRMT1 inhibited cell proliferation and immune evasion while reducing cell migration and invasion. Mechanistically, PRMT1 was shown to interact with MYC, facilitating its arginine methylation and enhancing its protein stability. Moreover, re-expression of MYC significantly reversed the anti-tumour effects associated with PRMT1 depletion. <i>In vivo</i> experiments further corroborated these results. Collectively, PRMT1 promotes HCC progression and immune escape by mediating ADMA methylation of MYC, thereby regulating its stability and expression.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":\"20 1\",\"pages\":\"2509044\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101584/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2025.2509044\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2509044","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

精氨酸甲基转移酶1 (PRMT1)被广泛认为是多种癌症的致癌基因。然而,其在肝细胞癌(HCC)中的具体作用和潜在机制尚不清楚。本研究探讨了PRMT1在HCC发生和免疫逃避中的功能。采用综合数据库分析(包括TCGA、The Human Protein Atlas、Kaplan-Meier Plotter和TIMER2.0)、分子技术(如RT-qPCR、Western blot分析和共免疫沉淀)、基于细胞的检测(包括MTT、菌落形成、transwell和T细胞杀伤检测)和体内模型来探索PRMT1在HCC中的作用。研究结果显示,在HCC临床样本和细胞系中,PRMT1均显著上调。PRMT1的缺失抑制细胞增殖和免疫逃避,同时减少细胞迁移和侵袭。在机制上,PRMT1被证明与MYC相互作用,促进其精氨酸甲基化并增强其蛋白质稳定性。此外,MYC的重新表达显著逆转了与PRMT1缺失相关的抗肿瘤作用。体内实验进一步证实了这些结果。总的来说,PRMT1通过介导MYC的ADMA甲基化促进HCC的进展和免疫逃逸,从而调节其稳定性和表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PRMT1 promotes immune escape in hepatocellular carcinoma by regulating arginine methylation modification of MYC protein.

Arginine methyltransferase 1 (PRMT1) is widely recognized as an oncogene in various cancers. However, its specific role and underlying mechanisms in hepatocellular carcinoma (HCC) remain insufficiently understood. This study investigated the function of PRMT1 in HCC development and immune evasion. A comprehensive approach combining database analysis (including TCGA, The Human Protein Atlas, Kaplan-Meier Plotter, and TIMER2.0), molecular techniques (such as RT-qPCR, Western blot analysis, and co-immunoprecipitation), cell-based assays (including MTT, colony formation, transwell, and T cell killing assays), and in vivo models was employed to explore PRMT1's role in HCC. The findings revealed a marked upregulation of PRMT1 in both HCC clinical samples and cell lines. Depletion of PRMT1 inhibited cell proliferation and immune evasion while reducing cell migration and invasion. Mechanistically, PRMT1 was shown to interact with MYC, facilitating its arginine methylation and enhancing its protein stability. Moreover, re-expression of MYC significantly reversed the anti-tumour effects associated with PRMT1 depletion. In vivo experiments further corroborated these results. Collectively, PRMT1 promotes HCC progression and immune escape by mediating ADMA methylation of MYC, thereby regulating its stability and expression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信