连续血糖监测仪中高于检测上限的血糖值的归算模型。

IF 5.7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Mikkel T Olsen, Maria Panagiotou, Knut J Strømmen, Carina K Klarskov, Peter L Kristensen, Stavroula Mougiakakou
{"title":"连续血糖监测仪中高于检测上限的血糖值的归算模型。","authors":"Mikkel T Olsen, Maria Panagiotou, Knut J Strømmen, Carina K Klarskov, Peter L Kristensen, Stavroula Mougiakakou","doi":"10.1089/dia.2025.0092","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> All continuous glucose monitors (CGMs) have an upper detection limit, typically of 22.2 mmol/L. This might bias CGM metrics. We aimed to develop and validate a statistical model for imputing values above this limit. <b><i>Methods:</i></b> We analyzed CGM data from 85 inpatients with type 2 diabetes, 705 outpatients with type 1 diabetes, and 27 outpatients with type 2 diabetes. A Bayesian nonparametric latent Gaussian process regression model was applied to the CGM data intentionally right censored for the top 5%, 10%, 20%, and 30% and compared with the uncensored CGM data by the bias, mean squared error (MSE), and coefficient of determination (<i>R</i><sup>2</sup>) of mean glucose, standard deviation (SD), and coefficient of variation (CV). <b><i>Results:</i></b> In hospitalized patients with diabetes, outpatients with type 1 diabetes, and outpatients with type 2 diabetes for 5% to 30% right censoring, respectively, the bias on mean glucose after imputation ranged from -0.012 to 0.362, -0.018 to 0.485, and -0.008 to 0.130, respectively. Bias on SD ranged from -0.024 to 0.226, -0.033 to 0.381, and -0.016 to 0.138, respectively. Bias on CV ranged from -0.207 to 1.543, -0.316 to 2.609, and -0.222 to 1.721, respectively. Similar results indicating good performance of the imputation model were observed for MSE and <i>R</i><sup>2</sup>. <b><i>Conclusions:</i></b> An imputation model for glucose values above the upper detection limit of CGMs was developed and validated in various populations. This enables a more unbiased quantification of CGM metrics for patients with severe hyperglycemia.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imputation Model for Glucose Values Above the Upper Detection Limit for Continuous Glucose Monitors.\",\"authors\":\"Mikkel T Olsen, Maria Panagiotou, Knut J Strømmen, Carina K Klarskov, Peter L Kristensen, Stavroula Mougiakakou\",\"doi\":\"10.1089/dia.2025.0092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Objective:</i></b> All continuous glucose monitors (CGMs) have an upper detection limit, typically of 22.2 mmol/L. This might bias CGM metrics. We aimed to develop and validate a statistical model for imputing values above this limit. <b><i>Methods:</i></b> We analyzed CGM data from 85 inpatients with type 2 diabetes, 705 outpatients with type 1 diabetes, and 27 outpatients with type 2 diabetes. A Bayesian nonparametric latent Gaussian process regression model was applied to the CGM data intentionally right censored for the top 5%, 10%, 20%, and 30% and compared with the uncensored CGM data by the bias, mean squared error (MSE), and coefficient of determination (<i>R</i><sup>2</sup>) of mean glucose, standard deviation (SD), and coefficient of variation (CV). <b><i>Results:</i></b> In hospitalized patients with diabetes, outpatients with type 1 diabetes, and outpatients with type 2 diabetes for 5% to 30% right censoring, respectively, the bias on mean glucose after imputation ranged from -0.012 to 0.362, -0.018 to 0.485, and -0.008 to 0.130, respectively. Bias on SD ranged from -0.024 to 0.226, -0.033 to 0.381, and -0.016 to 0.138, respectively. Bias on CV ranged from -0.207 to 1.543, -0.316 to 2.609, and -0.222 to 1.721, respectively. Similar results indicating good performance of the imputation model were observed for MSE and <i>R</i><sup>2</sup>. <b><i>Conclusions:</i></b> An imputation model for glucose values above the upper detection limit of CGMs was developed and validated in various populations. This enables a more unbiased quantification of CGM metrics for patients with severe hyperglycemia.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2025.0092\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2025.0092","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:所有连续血糖监测仪(cgm)的检测上限均为22.2 mmol/L。这可能会影响CGM指标。我们的目标是开发和验证一个统计模型,用于计算高于此限制的值。方法:我们分析了85例2型糖尿病住院患者、705例1型糖尿病门诊患者和27例2型糖尿病门诊患者的CGM数据。对前5%、10%、20%和30%的CGM数据采用贝叶斯非参数隐高斯过程回归模型,并通过偏差、均方误差(MSE)、平均葡萄糖的决定系数(R2)、标准差(SD)和变异系数(CV)与未删减的CGM数据进行比较。结果:在住院糖尿病患者、门诊1型糖尿病患者和门诊2型糖尿病患者中,右检率分别为5% ~ 30%,算入后平均血糖偏差范围分别为-0.012 ~ 0.362、-0.018 ~ 0.485和-0.008 ~ 0.130。SD偏差范围分别为-0.024至0.226、-0.033至0.381和-0.016至0.138。CV偏倚范围分别为-0.207 ~ 1.543、-0.316 ~ 2.609和-0.222 ~ 1.721。类似的结果表明,对MSE和R2的imputation模型具有良好的性能。结论:建立了葡萄糖值高于cgm检测上限的估算模型,并在不同人群中进行了验证。这使得对严重高血糖患者的CGM指标进行更公正的量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Imputation Model for Glucose Values Above the Upper Detection Limit for Continuous Glucose Monitors.

Objective: All continuous glucose monitors (CGMs) have an upper detection limit, typically of 22.2 mmol/L. This might bias CGM metrics. We aimed to develop and validate a statistical model for imputing values above this limit. Methods: We analyzed CGM data from 85 inpatients with type 2 diabetes, 705 outpatients with type 1 diabetes, and 27 outpatients with type 2 diabetes. A Bayesian nonparametric latent Gaussian process regression model was applied to the CGM data intentionally right censored for the top 5%, 10%, 20%, and 30% and compared with the uncensored CGM data by the bias, mean squared error (MSE), and coefficient of determination (R2) of mean glucose, standard deviation (SD), and coefficient of variation (CV). Results: In hospitalized patients with diabetes, outpatients with type 1 diabetes, and outpatients with type 2 diabetes for 5% to 30% right censoring, respectively, the bias on mean glucose after imputation ranged from -0.012 to 0.362, -0.018 to 0.485, and -0.008 to 0.130, respectively. Bias on SD ranged from -0.024 to 0.226, -0.033 to 0.381, and -0.016 to 0.138, respectively. Bias on CV ranged from -0.207 to 1.543, -0.316 to 2.609, and -0.222 to 1.721, respectively. Similar results indicating good performance of the imputation model were observed for MSE and R2. Conclusions: An imputation model for glucose values above the upper detection limit of CGMs was developed and validated in various populations. This enables a more unbiased quantification of CGM metrics for patients with severe hyperglycemia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes technology & therapeutics
Diabetes technology & therapeutics 医学-内分泌学与代谢
CiteScore
10.60
自引率
14.80%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信