修正“在临床实践中将人群药代动力学建模与精确给药相结合的推荐方法”。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
{"title":"修正“在临床实践中将人群药代动力学建模与精确给药相结合的推荐方法”。","authors":"","doi":"10.1002/bcp.70106","DOIUrl":null,"url":null,"abstract":"<p>\n <span>Berezowska, M</span>, <span>Hayden, IS</span>, <span>Brandon, AM</span>, et al. <span>Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice</span>. <i>Br J Clin Pharmacol</i>. <span>2025</span>; <span>91</span>(<span>4</span>): <span>1064</span>-<span>1079</span>. 10.1111/bcp.16335</p><p>In Section 7 (“Outlook for MIPD”), the citation to reference 115 in the phrase “hybridising NLME and ML models to improve upon MAP parameter estimates” was incorrect. This should have referred to a different publication authored by the same group.</p><p>The corrected sentence should read:</p><p>“Several proof-of-concept works have successfully demonstrated replacing popPK models with ML models for PK parameter prediction [143], hybridising NLME and ML models to improve upon MAP parameter estimates [new reference], using ML algorithms to accelerate NLME model development [144] and creating more realistic synthetic PK data by use of ML [145].”</p><p>The newly cited reference is:</p><p>Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacometrics Syst Pharmacol. 2021; 10: 1150–1160. https://doi.org/10.1002/psp4.12684</p><p>We apologize for this error.</p>","PeriodicalId":9251,"journal":{"name":"British journal of clinical pharmacology","volume":"91 7","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bcp.70106","citationCount":"0","resultStr":"{\"title\":\"Correction to “Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice”\",\"authors\":\"\",\"doi\":\"10.1002/bcp.70106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\n <span>Berezowska, M</span>, <span>Hayden, IS</span>, <span>Brandon, AM</span>, et al. <span>Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice</span>. <i>Br J Clin Pharmacol</i>. <span>2025</span>; <span>91</span>(<span>4</span>): <span>1064</span>-<span>1079</span>. 10.1111/bcp.16335</p><p>In Section 7 (“Outlook for MIPD”), the citation to reference 115 in the phrase “hybridising NLME and ML models to improve upon MAP parameter estimates” was incorrect. This should have referred to a different publication authored by the same group.</p><p>The corrected sentence should read:</p><p>“Several proof-of-concept works have successfully demonstrated replacing popPK models with ML models for PK parameter prediction [143], hybridising NLME and ML models to improve upon MAP parameter estimates [new reference], using ML algorithms to accelerate NLME model development [144] and creating more realistic synthetic PK data by use of ML [145].”</p><p>The newly cited reference is:</p><p>Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacometrics Syst Pharmacol. 2021; 10: 1150–1160. https://doi.org/10.1002/psp4.12684</p><p>We apologize for this error.</p>\",\"PeriodicalId\":9251,\"journal\":{\"name\":\"British journal of clinical pharmacology\",\"volume\":\"91 7\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bcp.70106\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British journal of clinical pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bcp.70106\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of clinical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bcp.70106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

别列佐夫斯卡,M,海登,IS,布兰登,AM等。在临床实践中,将人群药代动力学模型与精确给药相结合的推荐方法。中华临床医学杂志;2009;91(4): 1064 - 1079。10.1111 / bcp。16335在第7节(“MIPD展望”)中,短语“混合NLME和ML模型以改进MAP参数估计”中对参考文献115的引用是不正确的。这应该引用由同一组撰写的不同出版物。更正后的句子应该是:“一些概念验证工作已经成功地证明了用ML模型代替popPK模型进行PK参数预测[143],混合NLME和ML模型以改进MAP参数估计[新参考文献],使用ML算法加速NLME模型开发[144],并使用ML[145]创建更真实的合成PK数据。”新引用的文献是:Hughes JH, Keizer RJ。混合机器学习/药代动力学方法通过选择性地平坦模型先验,优于最大后验贝叶斯估计。CPT pharmacomeics system Pharmacol. 2021;10: 1150 - 1160。https://doi.org/10.1002/psp4.12684We为这个错误道歉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correction to “Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice”

Berezowska, M, Hayden, IS, Brandon, AM, et al. Recommended approaches for integration of population pharmacokinetic modelling with precision dosing in clinical practice. Br J Clin Pharmacol. 2025; 91(4): 1064-1079. 10.1111/bcp.16335

In Section 7 (“Outlook for MIPD”), the citation to reference 115 in the phrase “hybridising NLME and ML models to improve upon MAP parameter estimates” was incorrect. This should have referred to a different publication authored by the same group.

The corrected sentence should read:

“Several proof-of-concept works have successfully demonstrated replacing popPK models with ML models for PK parameter prediction [143], hybridising NLME and ML models to improve upon MAP parameter estimates [new reference], using ML algorithms to accelerate NLME model development [144] and creating more realistic synthetic PK data by use of ML [145].”

The newly cited reference is:

Hughes JH, Keizer RJ. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian estimation by selectively flattening model priors. CPT Pharmacometrics Syst Pharmacol. 2021; 10: 1150–1160. https://doi.org/10.1002/psp4.12684

We apologize for this error.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
8.80%
发文量
419
审稿时长
1 months
期刊介绍: Published on behalf of the British Pharmacological Society, the British Journal of Clinical Pharmacology features papers and reports on all aspects of drug action in humans: review articles, mini review articles, original papers, commentaries, editorials and letters. The Journal enjoys a wide readership, bridging the gap between the medical profession, clinical research and the pharmaceutical industry. It also publishes research on new methods, new drugs and new approaches to treatment. The Journal is recognised as one of the leading publications in its field. It is online only, publishes open access research through its OnlineOpen programme and is published monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信