Feifei Xia, Max Adriaan Verbiest, Oxana Lundström, Tugce Bilgin Sonay, Michael Baudis, Maria Anisimova
{"title":"短串联重复序列变异的多癌分析揭示了共享的基因调控机制。","authors":"Feifei Xia, Max Adriaan Verbiest, Oxana Lundström, Tugce Bilgin Sonay, Michael Baudis, Maria Anisimova","doi":"10.1093/bib/bbaf219","DOIUrl":null,"url":null,"abstract":"<p><p>Short tandem repeats (STRs) have been reported to influence gene expression across various human tissues. While STR variations are enriched in colorectal, stomach, and endometrial cancers, particularly in microsatellite instable tumors, their functional effects and regulatory mechanisms on gene expression remain poorly understood across these cancer types. Here, we leverage whole-exome sequencing and gene expression data to identify STRs for which repeat lengths are associated with the expression of nearby genes (eSTRs) in colorectal, stomach, and endometrial tumors. While most eSTRs are cancer-specific, shared eSTRs across multiple cancers exhibit consistent effects on gene expression. Notably, coding-region eSTRs identified in all three cancer types show positive correlations with nearby gene expression. We further validate the functional effects of eSTRs by demonstrating associations between somatic eSTR mutations and gene expression changes during the transition from normal to tumor tissues, suggesting their potential roles in tumorigenesis. Combined with DNA methylation data, we perform the first quantitative analysis of the interplay between STR variations and DNA methylation in tumors. We identify eSTRs where repeat lengths are associated with methylation levels of nearby CpG sites (meSTRs) and show that >70% of eSTRs are significantly linked to local DNA methylation. Importantly, the effects of meSTRs on DNA methylation remain consistent across cancer types. Overall, our findings enhance the understanding of how functional STR variations influence gene expression and DNA methylation. Our study highlights shared regulatory mechanisms of STRs across multiple cancers, offering a foundation for future research into their broader implications in tumor biology.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096010/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicancer analyses of short tandem repeat variations reveal shared gene regulatory mechanisms.\",\"authors\":\"Feifei Xia, Max Adriaan Verbiest, Oxana Lundström, Tugce Bilgin Sonay, Michael Baudis, Maria Anisimova\",\"doi\":\"10.1093/bib/bbaf219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Short tandem repeats (STRs) have been reported to influence gene expression across various human tissues. While STR variations are enriched in colorectal, stomach, and endometrial cancers, particularly in microsatellite instable tumors, their functional effects and regulatory mechanisms on gene expression remain poorly understood across these cancer types. Here, we leverage whole-exome sequencing and gene expression data to identify STRs for which repeat lengths are associated with the expression of nearby genes (eSTRs) in colorectal, stomach, and endometrial tumors. While most eSTRs are cancer-specific, shared eSTRs across multiple cancers exhibit consistent effects on gene expression. Notably, coding-region eSTRs identified in all three cancer types show positive correlations with nearby gene expression. We further validate the functional effects of eSTRs by demonstrating associations between somatic eSTR mutations and gene expression changes during the transition from normal to tumor tissues, suggesting their potential roles in tumorigenesis. Combined with DNA methylation data, we perform the first quantitative analysis of the interplay between STR variations and DNA methylation in tumors. We identify eSTRs where repeat lengths are associated with methylation levels of nearby CpG sites (meSTRs) and show that >70% of eSTRs are significantly linked to local DNA methylation. Importantly, the effects of meSTRs on DNA methylation remain consistent across cancer types. Overall, our findings enhance the understanding of how functional STR variations influence gene expression and DNA methylation. Our study highlights shared regulatory mechanisms of STRs across multiple cancers, offering a foundation for future research into their broader implications in tumor biology.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096010/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf219\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf219","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Multicancer analyses of short tandem repeat variations reveal shared gene regulatory mechanisms.
Short tandem repeats (STRs) have been reported to influence gene expression across various human tissues. While STR variations are enriched in colorectal, stomach, and endometrial cancers, particularly in microsatellite instable tumors, their functional effects and regulatory mechanisms on gene expression remain poorly understood across these cancer types. Here, we leverage whole-exome sequencing and gene expression data to identify STRs for which repeat lengths are associated with the expression of nearby genes (eSTRs) in colorectal, stomach, and endometrial tumors. While most eSTRs are cancer-specific, shared eSTRs across multiple cancers exhibit consistent effects on gene expression. Notably, coding-region eSTRs identified in all three cancer types show positive correlations with nearby gene expression. We further validate the functional effects of eSTRs by demonstrating associations between somatic eSTR mutations and gene expression changes during the transition from normal to tumor tissues, suggesting their potential roles in tumorigenesis. Combined with DNA methylation data, we perform the first quantitative analysis of the interplay between STR variations and DNA methylation in tumors. We identify eSTRs where repeat lengths are associated with methylation levels of nearby CpG sites (meSTRs) and show that >70% of eSTRs are significantly linked to local DNA methylation. Importantly, the effects of meSTRs on DNA methylation remain consistent across cancer types. Overall, our findings enhance the understanding of how functional STR variations influence gene expression and DNA methylation. Our study highlights shared regulatory mechanisms of STRs across multiple cancers, offering a foundation for future research into their broader implications in tumor biology.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.