{"title":"流感病毒重组模式在揭示跨物种传播事件时表现出偏好和连续性。","authors":"Xiao Ding, Yun Ma, Shicheng Li, Jingze Liu, Luyao Qin, Aiping Wu","doi":"10.1093/bib/bbaf233","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic reassortment is a key driver of influenza virus evolution and a major factor in pandemic emergence, as reassorted strains can exhibit significantly altered antigenicity. However, due to technical and ethical constraints, research on reassortment patterns (RPs) has been limited, impeding effective surveillance and control strategies. To address this gap, we developed FluRPId, a framework for identifying RPs based on the genetic diversity of influenza viruses. FluRPId integrates principles of reassortment diversity maximization, dominance, and epidemiological likelihood to assess the credibility of detected reassortment events. Applying FluRPId, we constructed a comprehensive reassortment landscape of influenza viruses, encompassing widespread reassortment events with high credibility, which also include most previously reported reassortment events. Our analysis revealed that the NS gene frequently reassorts with PA and NA, while reassortment involving HA, NA, and NS occurs more frequently than expected. Furthermore, we identified specific loci combinations that exhibit strong linkage during reassortment, providing insights into segment association preferences. Additionally, extensive reassortment chains were observed across all subtypes, underscoring the continuity of reassortment in influenza virus evolution. Notably, we identified significant cross-species reassortment events and characterized host adaptation changes in cross-species-transmitted viruses. Our study provides the most comprehensive reassortment landscape of influenza viruses to date, uncovering key patterns, preferences, and evolutionary continuity. These findings bridge a critical gap in macro-scale reassortment studies and offer insights for future research and control efforts.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influenza virus reassortment patterns exhibit preference and continuity while uncovering cross-species transmission events.\",\"authors\":\"Xiao Ding, Yun Ma, Shicheng Li, Jingze Liu, Luyao Qin, Aiping Wu\",\"doi\":\"10.1093/bib/bbaf233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic reassortment is a key driver of influenza virus evolution and a major factor in pandemic emergence, as reassorted strains can exhibit significantly altered antigenicity. However, due to technical and ethical constraints, research on reassortment patterns (RPs) has been limited, impeding effective surveillance and control strategies. To address this gap, we developed FluRPId, a framework for identifying RPs based on the genetic diversity of influenza viruses. FluRPId integrates principles of reassortment diversity maximization, dominance, and epidemiological likelihood to assess the credibility of detected reassortment events. Applying FluRPId, we constructed a comprehensive reassortment landscape of influenza viruses, encompassing widespread reassortment events with high credibility, which also include most previously reported reassortment events. Our analysis revealed that the NS gene frequently reassorts with PA and NA, while reassortment involving HA, NA, and NS occurs more frequently than expected. Furthermore, we identified specific loci combinations that exhibit strong linkage during reassortment, providing insights into segment association preferences. Additionally, extensive reassortment chains were observed across all subtypes, underscoring the continuity of reassortment in influenza virus evolution. Notably, we identified significant cross-species reassortment events and characterized host adaptation changes in cross-species-transmitted viruses. Our study provides the most comprehensive reassortment landscape of influenza viruses to date, uncovering key patterns, preferences, and evolutionary continuity. These findings bridge a critical gap in macro-scale reassortment studies and offer insights for future research and control efforts.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf233\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf233","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Influenza virus reassortment patterns exhibit preference and continuity while uncovering cross-species transmission events.
Genomic reassortment is a key driver of influenza virus evolution and a major factor in pandemic emergence, as reassorted strains can exhibit significantly altered antigenicity. However, due to technical and ethical constraints, research on reassortment patterns (RPs) has been limited, impeding effective surveillance and control strategies. To address this gap, we developed FluRPId, a framework for identifying RPs based on the genetic diversity of influenza viruses. FluRPId integrates principles of reassortment diversity maximization, dominance, and epidemiological likelihood to assess the credibility of detected reassortment events. Applying FluRPId, we constructed a comprehensive reassortment landscape of influenza viruses, encompassing widespread reassortment events with high credibility, which also include most previously reported reassortment events. Our analysis revealed that the NS gene frequently reassorts with PA and NA, while reassortment involving HA, NA, and NS occurs more frequently than expected. Furthermore, we identified specific loci combinations that exhibit strong linkage during reassortment, providing insights into segment association preferences. Additionally, extensive reassortment chains were observed across all subtypes, underscoring the continuity of reassortment in influenza virus evolution. Notably, we identified significant cross-species reassortment events and characterized host adaptation changes in cross-species-transmitted viruses. Our study provides the most comprehensive reassortment landscape of influenza viruses to date, uncovering key patterns, preferences, and evolutionary continuity. These findings bridge a critical gap in macro-scale reassortment studies and offer insights for future research and control efforts.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.