使用空间和时间模式的物联网二进制文件中恶意软件检测的深度学习方法

IF 0.5 Q4 TELECOMMUNICATIONS
M. Nandish, Jalesh Kumar
{"title":"使用空间和时间模式的物联网二进制文件中恶意软件检测的深度学习方法","authors":"M. Nandish,&nbsp;Jalesh Kumar","doi":"10.1002/itl2.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The proliferation of malware in the Internet of Things (IoT) environment poses significant challenges to IoT security due to the heterogeneity and resource constraints of IoT devices. Traditional malware detection methods, which rely heavily on individual features, static analysis, and raw byte sequences, suffer from performance limitations and are not effective against evolving threats. The proposed work introduces a novel deep learning-based malware detection model that integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to learn spatial and temporal representations from binary features. CNN extracts spatial patterns from static binary representations, while GRU extracts sequential dependencies in dynamic binary features, enabling the detection of complex malware behaviors. To further enhance detection efficiency, a feature selection mechanism is incorporated to identify the most relevant spatial–temporal features, reducing training time while maintaining high detection accuracy. The proposed approach effectively combines static and dynamic feature representations to train a robust classifier capable of detecting sophisticated malware patterns. Experimental evaluations on an IoT malware dataset demonstrate the efficacy of the proposed model, achieving an average detection accuracy of 99.33%, significantly outperforming traditional methods. The results also show the model's robustness against obfuscation techniques, with a substantial reduction in the false positive rate (FPR).</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Learning Approach for Malware Detection in IoT Binaries Using Spatial and Temporal Patterns\",\"authors\":\"M. Nandish,&nbsp;Jalesh Kumar\",\"doi\":\"10.1002/itl2.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The proliferation of malware in the Internet of Things (IoT) environment poses significant challenges to IoT security due to the heterogeneity and resource constraints of IoT devices. Traditional malware detection methods, which rely heavily on individual features, static analysis, and raw byte sequences, suffer from performance limitations and are not effective against evolving threats. The proposed work introduces a novel deep learning-based malware detection model that integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to learn spatial and temporal representations from binary features. CNN extracts spatial patterns from static binary representations, while GRU extracts sequential dependencies in dynamic binary features, enabling the detection of complex malware behaviors. To further enhance detection efficiency, a feature selection mechanism is incorporated to identify the most relevant spatial–temporal features, reducing training time while maintaining high detection accuracy. The proposed approach effectively combines static and dynamic feature representations to train a robust classifier capable of detecting sophisticated malware patterns. Experimental evaluations on an IoT malware dataset demonstrate the efficacy of the proposed model, achieving an average detection accuracy of 99.33%, significantly outperforming traditional methods. The results also show the model's robustness against obfuscation techniques, with a substantial reduction in the false positive rate (FPR).</p>\\n </div>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于物联网设备的异构性和资源限制,物联网环境中恶意软件的泛滥给物联网安全带来了重大挑战。传统的恶意软件检测方法严重依赖于单个特征、静态分析和原始字节序列,受到性能限制,并且无法有效应对不断变化的威胁。提出的工作引入了一种新的基于深度学习的恶意软件检测模型,该模型集成了卷积神经网络(cnn)和门控循环单元(gru),从二进制特征中学习空间和时间表征。CNN从静态二进制特征中提取空间模式,而GRU从动态二进制特征中提取顺序依赖关系,从而能够检测复杂的恶意软件行为。为了进一步提高检测效率,引入特征选择机制,识别最相关的时空特征,减少训练时间,同时保持较高的检测精度。所提出的方法有效地结合了静态和动态特征表示,以训练能够检测复杂恶意软件模式的鲁棒分类器。在物联网恶意软件数据集上的实验评估证明了该模型的有效性,平均检测准确率达到99.33%,显著优于传统方法。结果还显示了该模型对混淆技术的鲁棒性,大大降低了假阳性率(FPR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Learning Approach for Malware Detection in IoT Binaries Using Spatial and Temporal Patterns

The proliferation of malware in the Internet of Things (IoT) environment poses significant challenges to IoT security due to the heterogeneity and resource constraints of IoT devices. Traditional malware detection methods, which rely heavily on individual features, static analysis, and raw byte sequences, suffer from performance limitations and are not effective against evolving threats. The proposed work introduces a novel deep learning-based malware detection model that integrates Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs) to learn spatial and temporal representations from binary features. CNN extracts spatial patterns from static binary representations, while GRU extracts sequential dependencies in dynamic binary features, enabling the detection of complex malware behaviors. To further enhance detection efficiency, a feature selection mechanism is incorporated to identify the most relevant spatial–temporal features, reducing training time while maintaining high detection accuracy. The proposed approach effectively combines static and dynamic feature representations to train a robust classifier capable of detecting sophisticated malware patterns. Experimental evaluations on an IoT malware dataset demonstrate the efficacy of the proposed model, achieving an average detection accuracy of 99.33%, significantly outperforming traditional methods. The results also show the model's robustness against obfuscation techniques, with a substantial reduction in the false positive rate (FPR).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信