{"title":"尤金·M·伦金。他对微血管研究做出了许多贡献,并举例说明了当前微血管功能障碍的研究","authors":"FitzRoy E. Curry, C. Charles Michel","doi":"10.1111/micc.70010","DOIUrl":null,"url":null,"abstract":"<p>Eugene Renkin used simplified uniform models of microvascular exchange units to describe the fundamental functions of the microcirculation: a cylindrical pore to characterize the barriers to exchange of water and solutes; a uniformly perfused capillary to distinguish flow-limited exchange from diffusion-limited exchange; and a membrane with large and small pores to describe macromolecule exchange between blood and lymph. A key idea linking these concepts to microvascular dysfunction is that local blood flows, microvascular pressures, and the permeability of the vascular wall are not uniformly distributed within microvascular beds. Renkin's concept of microvascular clearance of small solute was extended to show how heterogeneity in blood transit times compromised exchange. It was also extended to evaluate the relative contribution of diffusion, convection, and vesicle exchange to microvascular exchange of macromolecules when there is heterogeneity in macromolecule permeability, measured by the presence of large pores. An extension of his analysis to smaller proteins (14–20 KDa) showed that convective transport may limit the diffusion of inflammatory peptides, therapeutic agents, and toxins from the tissue into circulating blood. We include recent examples of the growing understanding of microvascular dysfunction in chronic disease and approaches to modeling heterogeneity in normal and diseased states.</p>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"32 4","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.70010","citationCount":"0","resultStr":"{\"title\":\"Eugene M Renkin. His Many Contributions to Microvascular Research With Examples of How They Inform Current Investigations of Microvascular Dysfunction\",\"authors\":\"FitzRoy E. Curry, C. Charles Michel\",\"doi\":\"10.1111/micc.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Eugene Renkin used simplified uniform models of microvascular exchange units to describe the fundamental functions of the microcirculation: a cylindrical pore to characterize the barriers to exchange of water and solutes; a uniformly perfused capillary to distinguish flow-limited exchange from diffusion-limited exchange; and a membrane with large and small pores to describe macromolecule exchange between blood and lymph. A key idea linking these concepts to microvascular dysfunction is that local blood flows, microvascular pressures, and the permeability of the vascular wall are not uniformly distributed within microvascular beds. Renkin's concept of microvascular clearance of small solute was extended to show how heterogeneity in blood transit times compromised exchange. It was also extended to evaluate the relative contribution of diffusion, convection, and vesicle exchange to microvascular exchange of macromolecules when there is heterogeneity in macromolecule permeability, measured by the presence of large pores. An extension of his analysis to smaller proteins (14–20 KDa) showed that convective transport may limit the diffusion of inflammatory peptides, therapeutic agents, and toxins from the tissue into circulating blood. We include recent examples of the growing understanding of microvascular dysfunction in chronic disease and approaches to modeling heterogeneity in normal and diseased states.</p>\",\"PeriodicalId\":18459,\"journal\":{\"name\":\"Microcirculation\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/micc.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcirculation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/micc.70010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.70010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Eugene M Renkin. His Many Contributions to Microvascular Research With Examples of How They Inform Current Investigations of Microvascular Dysfunction
Eugene Renkin used simplified uniform models of microvascular exchange units to describe the fundamental functions of the microcirculation: a cylindrical pore to characterize the barriers to exchange of water and solutes; a uniformly perfused capillary to distinguish flow-limited exchange from diffusion-limited exchange; and a membrane with large and small pores to describe macromolecule exchange between blood and lymph. A key idea linking these concepts to microvascular dysfunction is that local blood flows, microvascular pressures, and the permeability of the vascular wall are not uniformly distributed within microvascular beds. Renkin's concept of microvascular clearance of small solute was extended to show how heterogeneity in blood transit times compromised exchange. It was also extended to evaluate the relative contribution of diffusion, convection, and vesicle exchange to microvascular exchange of macromolecules when there is heterogeneity in macromolecule permeability, measured by the presence of large pores. An extension of his analysis to smaller proteins (14–20 KDa) showed that convective transport may limit the diffusion of inflammatory peptides, therapeutic agents, and toxins from the tissue into circulating blood. We include recent examples of the growing understanding of microvascular dysfunction in chronic disease and approaches to modeling heterogeneity in normal and diseased states.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.