基于指数温度依赖相互作用能参数的Cu-Fe-Ti合金液相热力学、表面和粘滞性能

IF 1.5 4区 材料科学 Q4 CHEMISTRY, PHYSICAL
U. Mehta, D. R. Yadav, S. K. Yadav, D. Adhikari
{"title":"基于指数温度依赖相互作用能参数的Cu-Fe-Ti合金液相热力学、表面和粘滞性能","authors":"U. Mehta,&nbsp;D. R. Yadav,&nbsp;S. K. Yadav,&nbsp;D. Adhikari","doi":"10.1007/s11669-025-01186-3","DOIUrl":null,"url":null,"abstract":"<div><p>The experimental data of the enthalpy of mixing and excess entropy of mixing of binary subsystems Cu-Fe, Fe-Ti, and Cu-Ti of Cu-Fe-Ti ternary liquid alloy were utilized to compute the exponential temperature-dependent interaction energy parameters for excess Gibbs energy of mixing using the Redlich-Kister (R-K) polynomial. The optimized parameters were utilized to calculate the excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary and ternary alloys at temperatures of 1873, 1973, 2073, and 2173 K. The Butler equation was utilized to analyze surface properties, while the Kaptay equation was employed to calculate the viscosity of ternary liquid alloys. The computed values of excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary liquid alloys are in good agreement with the experimental data. The surface tension and viscosity of the ternary alloys are highly influenced by the fluctuations in the bulk amount of Cu. As temperature increases, the surface tension of the ternary alloy decreases in a linear manner, while the viscosity decreases in a non-linear way.</p></div>","PeriodicalId":657,"journal":{"name":"Journal of Phase Equilibria and Diffusion","volume":"46 2","pages":"267 - 278"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic, Surface and Viscous Properties of Cu-Fe-Ti Alloys in Liquid State Based on Exponential Temperature-Dependent Interaction Energy Parameters\",\"authors\":\"U. Mehta,&nbsp;D. R. Yadav,&nbsp;S. K. Yadav,&nbsp;D. Adhikari\",\"doi\":\"10.1007/s11669-025-01186-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The experimental data of the enthalpy of mixing and excess entropy of mixing of binary subsystems Cu-Fe, Fe-Ti, and Cu-Ti of Cu-Fe-Ti ternary liquid alloy were utilized to compute the exponential temperature-dependent interaction energy parameters for excess Gibbs energy of mixing using the Redlich-Kister (R-K) polynomial. The optimized parameters were utilized to calculate the excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary and ternary alloys at temperatures of 1873, 1973, 2073, and 2173 K. The Butler equation was utilized to analyze surface properties, while the Kaptay equation was employed to calculate the viscosity of ternary liquid alloys. The computed values of excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary liquid alloys are in good agreement with the experimental data. The surface tension and viscosity of the ternary alloys are highly influenced by the fluctuations in the bulk amount of Cu. As temperature increases, the surface tension of the ternary alloy decreases in a linear manner, while the viscosity decreases in a non-linear way.</p></div>\",\"PeriodicalId\":657,\"journal\":{\"name\":\"Journal of Phase Equilibria and Diffusion\",\"volume\":\"46 2\",\"pages\":\"267 - 278\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phase Equilibria and Diffusion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11669-025-01186-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phase Equilibria and Diffusion","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11669-025-01186-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用Cu-Fe- ti三元液态合金中Cu-Fe、Fe-Ti和Cu-Ti二元子系统的混合焓和混合过剩熵的实验数据,利用Redlich-Kister (R-K)多项式计算了混合过剩吉布斯能的指数型温度依赖相互作用能参数。利用优化后的参数计算了二元和三元合金在1873、1973、2073和2173 K温度下的过量吉布斯混合能、混合焓和组分活度。采用Butler方程分析表面性能,采用Kaptay方程计算三元液态合金的粘度。二元液态合金中过量吉布斯混合能、混合焓和组分活度的计算值与实验数据吻合较好。三元合金的表面张力和黏度受Cu体积量波动的影响较大。随着温度的升高,三元合金的表面张力呈线性下降,而粘度呈非线性下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic, Surface and Viscous Properties of Cu-Fe-Ti Alloys in Liquid State Based on Exponential Temperature-Dependent Interaction Energy Parameters

The experimental data of the enthalpy of mixing and excess entropy of mixing of binary subsystems Cu-Fe, Fe-Ti, and Cu-Ti of Cu-Fe-Ti ternary liquid alloy were utilized to compute the exponential temperature-dependent interaction energy parameters for excess Gibbs energy of mixing using the Redlich-Kister (R-K) polynomial. The optimized parameters were utilized to calculate the excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary and ternary alloys at temperatures of 1873, 1973, 2073, and 2173 K. The Butler equation was utilized to analyze surface properties, while the Kaptay equation was employed to calculate the viscosity of ternary liquid alloys. The computed values of excess Gibbs energy of mixing, enthalpy of mixing, and activity of components in the binary liquid alloys are in good agreement with the experimental data. The surface tension and viscosity of the ternary alloys are highly influenced by the fluctuations in the bulk amount of Cu. As temperature increases, the surface tension of the ternary alloy decreases in a linear manner, while the viscosity decreases in a non-linear way.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Phase Equilibria and Diffusion
Journal of Phase Equilibria and Diffusion 工程技术-材料科学:综合
CiteScore
2.50
自引率
7.10%
发文量
70
审稿时长
1 months
期刊介绍: The most trusted journal for phase equilibria and thermodynamic research, ASM International''s Journal of Phase Equilibria and Diffusion features critical phase diagram evaluations on scientifically and industrially important alloy systems, authored by international experts. The Journal of Phase Equilibria and Diffusion is critically reviewed and contains basic and applied research results, a survey of current literature and other pertinent articles. The journal covers the significance of diagrams as well as new research techniques, equipment, data evaluation, nomenclature, presentation and other aspects of phase diagram preparation and use. Content includes information on phenomena such as kinetic control of equilibrium, coherency effects, impurity effects, and thermodynamic and crystallographic characteristics. The journal updates systems previously published in the Bulletin of Alloy Phase Diagrams as new data are discovered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信