{"title":"巴罗年龄和新巴罗年龄暗能量模型的参数约束和宇宙学分析","authors":"Anamika Kotal, Sayani Maity, Ujjal Debnath, Anirudh Pradhan","doi":"10.1140/epjc/s10052-025-14294-8","DOIUrl":null,"url":null,"abstract":"<div><p>This research focuses on examining a non-flat Friedmann–Robertson–Walker (FRW) cosmological model of the universe incorporating both dark matter and dark energy. Two intriguing dark energy models, Barrow agegraphic dark energy (BADE) and new Barrow agegraphic dark energy (NBADE), which were introduced in accordance with the holographic principle incorporating Barrow entropy, have been selected to play the role of dark energy. Using datasets from cosmic chronometers and baryon acoustic oscillations, we utilized the Markov Chain Monte Carlo (MCMC) technique to constrain the parameters of our model. This enables us to make several possible comparisons between these novel models of dark energy and the <span>\\(\\Lambda \\)</span>CDM models. Here, we explore cosmological parameters, including the equation of state(EoS) parameter, jerk parameter, deceleration parameter, and cosmological planes such as the <span>\\(q-r\\)</span> plane, <span>\\(\\omega _d - \\omega '_d\\)</span> for different values of the model parameters by considering both the presence and absence of mutual interactions of the dark sector of the universe. In addition, we examined the thermal stability and the Swampland criteria of our constructed models. Additionally, we analyze the energy conditions and find that NEC and DEC are fulfilled, but SEC is broken, indicating model stability and supporting the current acceleration of the universe. In order to give a more precise explanation of the origin of cosmic structures, we lastly conduct a linear perturbation analysis to examine the growth in matter density perturbations.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14294-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Parameter constraints and cosmographic analysis of Barrow agegraphic and new Barrow agegraphic dark energy models\",\"authors\":\"Anamika Kotal, Sayani Maity, Ujjal Debnath, Anirudh Pradhan\",\"doi\":\"10.1140/epjc/s10052-025-14294-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research focuses on examining a non-flat Friedmann–Robertson–Walker (FRW) cosmological model of the universe incorporating both dark matter and dark energy. Two intriguing dark energy models, Barrow agegraphic dark energy (BADE) and new Barrow agegraphic dark energy (NBADE), which were introduced in accordance with the holographic principle incorporating Barrow entropy, have been selected to play the role of dark energy. Using datasets from cosmic chronometers and baryon acoustic oscillations, we utilized the Markov Chain Monte Carlo (MCMC) technique to constrain the parameters of our model. This enables us to make several possible comparisons between these novel models of dark energy and the <span>\\\\(\\\\Lambda \\\\)</span>CDM models. Here, we explore cosmological parameters, including the equation of state(EoS) parameter, jerk parameter, deceleration parameter, and cosmological planes such as the <span>\\\\(q-r\\\\)</span> plane, <span>\\\\(\\\\omega _d - \\\\omega '_d\\\\)</span> for different values of the model parameters by considering both the presence and absence of mutual interactions of the dark sector of the universe. In addition, we examined the thermal stability and the Swampland criteria of our constructed models. Additionally, we analyze the energy conditions and find that NEC and DEC are fulfilled, but SEC is broken, indicating model stability and supporting the current acceleration of the universe. In order to give a more precise explanation of the origin of cosmic structures, we lastly conduct a linear perturbation analysis to examine the growth in matter density perturbations.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14294-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14294-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14294-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Parameter constraints and cosmographic analysis of Barrow agegraphic and new Barrow agegraphic dark energy models
This research focuses on examining a non-flat Friedmann–Robertson–Walker (FRW) cosmological model of the universe incorporating both dark matter and dark energy. Two intriguing dark energy models, Barrow agegraphic dark energy (BADE) and new Barrow agegraphic dark energy (NBADE), which were introduced in accordance with the holographic principle incorporating Barrow entropy, have been selected to play the role of dark energy. Using datasets from cosmic chronometers and baryon acoustic oscillations, we utilized the Markov Chain Monte Carlo (MCMC) technique to constrain the parameters of our model. This enables us to make several possible comparisons between these novel models of dark energy and the \(\Lambda \)CDM models. Here, we explore cosmological parameters, including the equation of state(EoS) parameter, jerk parameter, deceleration parameter, and cosmological planes such as the \(q-r\) plane, \(\omega _d - \omega '_d\) for different values of the model parameters by considering both the presence and absence of mutual interactions of the dark sector of the universe. In addition, we examined the thermal stability and the Swampland criteria of our constructed models. Additionally, we analyze the energy conditions and find that NEC and DEC are fulfilled, but SEC is broken, indicating model stability and supporting the current acceleration of the universe. In order to give a more precise explanation of the origin of cosmic structures, we lastly conduct a linear perturbation analysis to examine the growth in matter density perturbations.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.