基于好的多项式的量子局部可恢复码

Sandeep Sharma;Vinayak Ramkumar;Itzhak Tamo
{"title":"基于好的多项式的量子局部可恢复码","authors":"Sandeep Sharma;Vinayak Ramkumar;Itzhak Tamo","doi":"10.1109/JSAIT.2025.3567480","DOIUrl":null,"url":null,"abstract":"Locally recoverable codes (LRCs) with locality parameter r can recover any erased code symbol by accessing r other code symbols. This local recovery property is of great interest in large-scale distributed classical data storage systems as it leads to efficient repair of failed nodes. A well-known class of optimal (classical) LRCs are subcodes of Reed-Solomon codes constructed using a special type of polynomials called good polynomials. Recently, Golowich and Guruswami initiated the study of quantum LRCs (qLRCs), which could have applications in quantum data storage systems of the future. The authors presented a qLRC construction based on good polynomials arising out of subgroups of the multiplicative group of finite fields. In this paper, we present a qLRC construction method that can employ any good polynomial. We also propose a new approach for designing good polynomials using subgroups of affine general linear groups. Golowich and Guruswami also derived a lower bound on the minimum distance of their qLRC under the restriction that <inline-formula> <tex-math>$r+1$ </tex-math></inline-formula> is prime. Using similar techniques in conjunction with the expander mixing lemma, we develop minimum distance lower bounds for our qLRCs without the <inline-formula> <tex-math>$r+1$ </tex-math></inline-formula> prime restriction.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"100-110"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Locally Recoverable Codes via Good Polynomials\",\"authors\":\"Sandeep Sharma;Vinayak Ramkumar;Itzhak Tamo\",\"doi\":\"10.1109/JSAIT.2025.3567480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locally recoverable codes (LRCs) with locality parameter r can recover any erased code symbol by accessing r other code symbols. This local recovery property is of great interest in large-scale distributed classical data storage systems as it leads to efficient repair of failed nodes. A well-known class of optimal (classical) LRCs are subcodes of Reed-Solomon codes constructed using a special type of polynomials called good polynomials. Recently, Golowich and Guruswami initiated the study of quantum LRCs (qLRCs), which could have applications in quantum data storage systems of the future. The authors presented a qLRC construction based on good polynomials arising out of subgroups of the multiplicative group of finite fields. In this paper, we present a qLRC construction method that can employ any good polynomial. We also propose a new approach for designing good polynomials using subgroups of affine general linear groups. Golowich and Guruswami also derived a lower bound on the minimum distance of their qLRC under the restriction that <inline-formula> <tex-math>$r+1$ </tex-math></inline-formula> is prime. Using similar techniques in conjunction with the expander mixing lemma, we develop minimum distance lower bounds for our qLRCs without the <inline-formula> <tex-math>$r+1$ </tex-math></inline-formula> prime restriction.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"6 \",\"pages\":\"100-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10988873/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10988873/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有局部性参数r的局部可恢复代码(lrc)可以通过访问r个其他代码符号来恢复任何被擦除的代码符号。这种局部恢复特性在大规模分布式经典数据存储系统中非常有意义,因为它可以有效地修复故障节点。一类众所周知的最优(经典)lrc是Reed-Solomon码的子码,它使用一种称为好多项式的特殊多项式构造。最近,Golowich和Guruswami开始了量子lrc (qlrc)的研究,这可能在未来的量子数据存储系统中得到应用。基于有限域的乘群的子群所产生的好多项式,提出了一种qrrc结构。在本文中,我们提出了一种可以使用任何好的多项式的qLRC构造方法。我们还提出了一种利用仿射一般线性群的子群来设计好的多项式的新方法。Golowich和Guruswami还在r+1$为素数的限制下,推导出了他们的qLRC的最小距离的下界。使用类似的技术结合扩展器混合引理,我们开发了没有r+1素数限制的qlrc的最小距离下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Locally Recoverable Codes via Good Polynomials
Locally recoverable codes (LRCs) with locality parameter r can recover any erased code symbol by accessing r other code symbols. This local recovery property is of great interest in large-scale distributed classical data storage systems as it leads to efficient repair of failed nodes. A well-known class of optimal (classical) LRCs are subcodes of Reed-Solomon codes constructed using a special type of polynomials called good polynomials. Recently, Golowich and Guruswami initiated the study of quantum LRCs (qLRCs), which could have applications in quantum data storage systems of the future. The authors presented a qLRC construction based on good polynomials arising out of subgroups of the multiplicative group of finite fields. In this paper, we present a qLRC construction method that can employ any good polynomial. We also propose a new approach for designing good polynomials using subgroups of affine general linear groups. Golowich and Guruswami also derived a lower bound on the minimum distance of their qLRC under the restriction that $r+1$ is prime. Using similar techniques in conjunction with the expander mixing lemma, we develop minimum distance lower bounds for our qLRCs without the $r+1$ prime restriction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信