平面环面最佳分割成较小直径的部分

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
D.S. Protasov , A.D. Tolmachev , V.A. Voronov
{"title":"平面环面最佳分割成较小直径的部分","authors":"D.S. Protasov ,&nbsp;A.D. Tolmachev ,&nbsp;V.A. Voronov","doi":"10.1016/j.disopt.2025.100890","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of partitioning a two-dimensional flat torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> into <span><math><mi>m</mi></math></span> sets in order to minimize the maximum diameter of a part. For <span><math><mrow><mi>m</mi><mo>⩽</mo><mn>25</mn></mrow></math></span> we give numerical estimates for the maximum diameter <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> at which the partition exists. Several approaches are proposed to obtain such estimates. In particular, we use the search for mesh partitions via the SAT solver, the global optimization approach for polygonal partitions, and the optimization of periodic hexagonal tilings. For <span><math><mrow><mi>m</mi><mo>=</mo><mn>3</mn></mrow></math></span>, the exact estimate is proved using elementary topological reasoning.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"57 ","pages":"Article 100890"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal partitions of the flat torus into parts of smaller diameter\",\"authors\":\"D.S. Protasov ,&nbsp;A.D. Tolmachev ,&nbsp;V.A. Voronov\",\"doi\":\"10.1016/j.disopt.2025.100890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the problem of partitioning a two-dimensional flat torus <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> into <span><math><mi>m</mi></math></span> sets in order to minimize the maximum diameter of a part. For <span><math><mrow><mi>m</mi><mo>⩽</mo><mn>25</mn></mrow></math></span> we give numerical estimates for the maximum diameter <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> at which the partition exists. Several approaches are proposed to obtain such estimates. In particular, we use the search for mesh partitions via the SAT solver, the global optimization approach for polygonal partitions, and the optimization of periodic hexagonal tilings. For <span><math><mrow><mi>m</mi><mo>=</mo><mn>3</mn></mrow></math></span>, the exact estimate is proved using elementary topological reasoning.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"57 \",\"pages\":\"Article 100890\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528625000131\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000131","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了使零件的最大直径最小,我们考虑将二维平面环面T2划分为m个集的问题。对于m≤25,我们给出了分区存在的最大直径dm(T2)的数值估计。提出了几种方法来获得这种估计。特别是,我们使用了通过SAT求解器搜索网格分区,多边形分区的全局优化方法,以及周期性六边形平铺的优化方法。对于m=3,利用初等拓扑推理证明了精确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal partitions of the flat torus into parts of smaller diameter
We consider the problem of partitioning a two-dimensional flat torus T2 into m sets in order to minimize the maximum diameter of a part. For m25 we give numerical estimates for the maximum diameter dm(T2) at which the partition exists. Several approaches are proposed to obtain such estimates. In particular, we use the search for mesh partitions via the SAT solver, the global optimization approach for polygonal partitions, and the optimization of periodic hexagonal tilings. For m=3, the exact estimate is proved using elementary topological reasoning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信