{"title":"不同材料类型对下肢外骨骼结构人体工程学的影响","authors":"İsmail Çalıkuşu , Ugur Fidan","doi":"10.1016/j.compbiomed.2025.110403","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the effects of materials such as A Glass Fiber, Aluminum Alloy, Stainless Steel, S Glass Fiber, C Graphite, Hexcel, and Thornel on biomechanical performance in the design of lower extremity exoskeletons. Exoskeleton models created using Computer-Aided Modeling software were integrated into the AnyBody Modeling System and combined with a full-body human model to conduct walking simulations. In these simulations, femur and tibia segments were also incorporated into the model to analyze the impacts of the exoskeleton on human movement dynamics in detail. The results reveal that material selection significantly influences joint reaction forces and moments, ground reaction forces, and contact forces. Flexible materials were found to provide greater comfort to the user but demonstrated lower durability performance. Conversely, more durable materials improved overall efficiency by reducing load transfer. These findings emphasize that material selection in exoskeleton design plays a critical role not only in durability and performance but also in meeting ergonomic requirements. This research offers a valuable foundation for developing exoskeleton designs tailored to different user groups and highlights the need to customize material selection to optimize biomechanical performance. The study serves as a guide for enhancing the compatibility of exoskeletons with human movement dynamics and improving user comfort.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"193 ","pages":"Article 110403"},"PeriodicalIF":7.0000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of different material types on ergonomics in lower extremity exoskeleton construction\",\"authors\":\"İsmail Çalıkuşu , Ugur Fidan\",\"doi\":\"10.1016/j.compbiomed.2025.110403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the effects of materials such as A Glass Fiber, Aluminum Alloy, Stainless Steel, S Glass Fiber, C Graphite, Hexcel, and Thornel on biomechanical performance in the design of lower extremity exoskeletons. Exoskeleton models created using Computer-Aided Modeling software were integrated into the AnyBody Modeling System and combined with a full-body human model to conduct walking simulations. In these simulations, femur and tibia segments were also incorporated into the model to analyze the impacts of the exoskeleton on human movement dynamics in detail. The results reveal that material selection significantly influences joint reaction forces and moments, ground reaction forces, and contact forces. Flexible materials were found to provide greater comfort to the user but demonstrated lower durability performance. Conversely, more durable materials improved overall efficiency by reducing load transfer. These findings emphasize that material selection in exoskeleton design plays a critical role not only in durability and performance but also in meeting ergonomic requirements. This research offers a valuable foundation for developing exoskeleton designs tailored to different user groups and highlights the need to customize material selection to optimize biomechanical performance. The study serves as a guide for enhancing the compatibility of exoskeletons with human movement dynamics and improving user comfort.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"193 \",\"pages\":\"Article 110403\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525007541\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525007541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
The impact of different material types on ergonomics in lower extremity exoskeleton construction
This study examines the effects of materials such as A Glass Fiber, Aluminum Alloy, Stainless Steel, S Glass Fiber, C Graphite, Hexcel, and Thornel on biomechanical performance in the design of lower extremity exoskeletons. Exoskeleton models created using Computer-Aided Modeling software were integrated into the AnyBody Modeling System and combined with a full-body human model to conduct walking simulations. In these simulations, femur and tibia segments were also incorporated into the model to analyze the impacts of the exoskeleton on human movement dynamics in detail. The results reveal that material selection significantly influences joint reaction forces and moments, ground reaction forces, and contact forces. Flexible materials were found to provide greater comfort to the user but demonstrated lower durability performance. Conversely, more durable materials improved overall efficiency by reducing load transfer. These findings emphasize that material selection in exoskeleton design plays a critical role not only in durability and performance but also in meeting ergonomic requirements. This research offers a valuable foundation for developing exoskeleton designs tailored to different user groups and highlights the need to customize material selection to optimize biomechanical performance. The study serves as a guide for enhancing the compatibility of exoskeletons with human movement dynamics and improving user comfort.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.