{"title":"基于神经网络和特征重要性分析的间接观测数据符号湍流模型学习框架","authors":"Chutian Wu , Xin-Lei Zhang , Duo Xu , Guowei He","doi":"10.1016/j.jcp.2025.114068","DOIUrl":null,"url":null,"abstract":"<div><div>Learning symbolic turbulence models from indirect observation data is of significant interest as it not only improves the accuracy of posterior prediction but also provides explicit model formulations with good interpretability. However, it typically resorts to gradient-free evolutionary algorithms, which can be relatively inefficient compared to gradient-based approaches, particularly when the Reynolds-averaged Navier–Stokes (RANS) simulations are involved in the training process. In view of this difficulty, we propose a framework that uses neural networks and the associated feature importance analysis to improve the efficiency of symbolic turbulence modeling. In doing so, the gradient-based method can be used to efficiently learn neural network-based representations of Reynolds stress from indirect data, which is further transformed into simplified mathematical expressions with symbolic regression. Moreover, feature importance analysis is introduced to accelerate the convergence of symbolic regression by excluding insignificant input features. The proposed training strategy is tested in the flow in a square duct, where it correctly learns underlying analytic models from indirect velocity data. Further, the method is applied in the flow over the periodic hills, demonstrating that the feature importance analysis can significantly improve the training efficiency and learn symbolic turbulence models with satisfactory generalizability.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"537 ","pages":"Article 114068"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework for learning symbolic turbulence models from indirect observation data via neural networks and feature importance analysis\",\"authors\":\"Chutian Wu , Xin-Lei Zhang , Duo Xu , Guowei He\",\"doi\":\"10.1016/j.jcp.2025.114068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Learning symbolic turbulence models from indirect observation data is of significant interest as it not only improves the accuracy of posterior prediction but also provides explicit model formulations with good interpretability. However, it typically resorts to gradient-free evolutionary algorithms, which can be relatively inefficient compared to gradient-based approaches, particularly when the Reynolds-averaged Navier–Stokes (RANS) simulations are involved in the training process. In view of this difficulty, we propose a framework that uses neural networks and the associated feature importance analysis to improve the efficiency of symbolic turbulence modeling. In doing so, the gradient-based method can be used to efficiently learn neural network-based representations of Reynolds stress from indirect data, which is further transformed into simplified mathematical expressions with symbolic regression. Moreover, feature importance analysis is introduced to accelerate the convergence of symbolic regression by excluding insignificant input features. The proposed training strategy is tested in the flow in a square duct, where it correctly learns underlying analytic models from indirect velocity data. Further, the method is applied in the flow over the periodic hills, demonstrating that the feature importance analysis can significantly improve the training efficiency and learn symbolic turbulence models with satisfactory generalizability.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"537 \",\"pages\":\"Article 114068\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125003511\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125003511","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A framework for learning symbolic turbulence models from indirect observation data via neural networks and feature importance analysis
Learning symbolic turbulence models from indirect observation data is of significant interest as it not only improves the accuracy of posterior prediction but also provides explicit model formulations with good interpretability. However, it typically resorts to gradient-free evolutionary algorithms, which can be relatively inefficient compared to gradient-based approaches, particularly when the Reynolds-averaged Navier–Stokes (RANS) simulations are involved in the training process. In view of this difficulty, we propose a framework that uses neural networks and the associated feature importance analysis to improve the efficiency of symbolic turbulence modeling. In doing so, the gradient-based method can be used to efficiently learn neural network-based representations of Reynolds stress from indirect data, which is further transformed into simplified mathematical expressions with symbolic regression. Moreover, feature importance analysis is introduced to accelerate the convergence of symbolic regression by excluding insignificant input features. The proposed training strategy is tested in the flow in a square duct, where it correctly learns underlying analytic models from indirect velocity data. Further, the method is applied in the flow over the periodic hills, demonstrating that the feature importance analysis can significantly improve the training efficiency and learn symbolic turbulence models with satisfactory generalizability.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.