Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría
{"title":"利用遥感、天气和管理数据估算从块到区域的葡萄产量","authors":"Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría","doi":"10.1016/j.inpa.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 195-208"},"PeriodicalIF":7.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vine yield estimation from block to regional scale employing remote sensing, weather, and management data\",\"authors\":\"Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría\",\"doi\":\"10.1016/j.inpa.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 2\",\"pages\":\"Pages 195-208\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Vine yield estimation from block to regional scale employing remote sensing, weather, and management data
Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining