利用遥感、天气和管理数据估算从块到区域的葡萄产量

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY
Pedro C. Towers , Sean E. Roulet , Carlos Poblete-Echeverría
{"title":"利用遥感、天气和管理数据估算从块到区域的葡萄产量","authors":"Pedro C. Towers ,&nbsp;Sean E. Roulet ,&nbsp;Carlos Poblete-Echeverría","doi":"10.1016/j.inpa.2024.06.001","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 195-208"},"PeriodicalIF":7.7000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vine yield estimation from block to regional scale employing remote sensing, weather, and management data\",\"authors\":\"Pedro C. Towers ,&nbsp;Sean E. Roulet ,&nbsp;Carlos Poblete-Echeverría\",\"doi\":\"10.1016/j.inpa.2024.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 2\",\"pages\":\"Pages 195-208\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解不同尺度下葡萄产量的空间变化对葡萄酒行业至关重要,结合对葡萄大小变化的估计,可以在块内绘制植物-生殖平衡图。遥感与不包括实地抽样的其他数据相结合,似乎是在大比例尺范围内估计产量的最佳方法。本研究收集了阿根廷门多萨西部绿洲18个季节8000多个区块的平均产量和已知影响产量组成部分的因素。采用偏最小二乘(PLS)和随机森林(RF)模型分析了这些因素与产量的关系。PLS模型提供了非常差的结果,决定系数低于0.08。具有49至19个变量的RF模型产生的预测的决定系数分别为0.96至0.90。一些传统上被认为对产量决定很重要的因素,如棚架、霜冻发生或种植密度的影响有限,而位置的影响很大。研究结果表明,不需要实地工作就可以成功地进行产量空间预测,并表明使用这些工具可以在块尺度上绘制VRB地图。对投入提出了若干改进建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vine yield estimation from block to regional scale employing remote sensing, weather, and management data
Knowledge of the spatial variation in vine yield at different scales is crucial for the wine business, and combined with estimations of vine size variability enables within-block mapping of vegetative-reproductive balance. Remote sensing combined with other data that excludes field sampling appears as an optimal approach for yield estimation for a broad range of scales. In this study, mean yield and factors known to affect yield components were collected for over 8000 blocks, over 18 seasons, in the western oasis of Mendoza, Argentina. Partial Least Squares (PLS) and Random Forest (RF) models were used to analyse the relationship between these factors and yield. The PLS model delivered very poor results, with coefficients of determination lower than 0.08. RF models with 49 to 19 variables produced predictions with coefficients of determination of 0.96 to 0.90, respectively. Some factors traditionally considered important in yield determination, such as trellis, frost occurrence, or planting density had limited influence, whereas location weighed heavily. Results suggest a successful approach to spatial prediction of yield that requires no fieldwork and indicates VRB mapping at block-scale may be possible with these tools. Several improvements to inputs are proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信