Uzair Sajjad , Farzana Bibi , Imtiyaz Hussain , Naseem Abbas , Muhammad Sultan , Hafiz Muhammad Asfahan , Muhammad Aleem , Wei-Mon Yan
{"title":"机器学习使猕猴桃真空冷冻干燥的评估成为可能","authors":"Uzair Sajjad , Farzana Bibi , Imtiyaz Hussain , Naseem Abbas , Muhammad Sultan , Hafiz Muhammad Asfahan , Muhammad Aleem , Wei-Mon Yan","doi":"10.1016/j.inpa.2024.09.004","DOIUrl":null,"url":null,"abstract":"<div><div>Drying technologies have been essential for extending the shelf-life of perishable fruits and vegetables for over a century. Vacuum freeze-drying (VFD), though invented over a hundred years ago, remains one of the most advanced drying techniques, known for sustainably drying perishable products while maintaining quality indices and morphological properties comparable to their fresh state. The performance of the VFD system is sensitive to the operating conditions and features of the drying product which is assessed using experimental and/or numerical methods. However, the qualitative aspects of the dried product are not predictable. In this context, the present study aims to create a deep neural framework (DNF) that predicts the performance of a Vacuum Freeze Drying (VFD) system for kiwifruit, based on its morphology and nutritional value under varying conditions. This involves translating the fruit’s morphological features into trainable data and using a Generative Adversarial Network (GAN) to create diverse, unlabeled datasets. The framework is optimized using Gaussian Process (GP) for hyper-parameter tuning, focusing on minimizing errors like mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The maximum MSE of 1.243 is found in the prediction of rehydration rate, followed by color (0.725), energy consumption (0.426), moisture content (0.379), texture (0.320), sensory (0.250), and Brix (0.215), respectively. The maximum MAE and MAPE values are recorded 0.833 and 32.99 % while the minimum is observed 0.368 and 7.019 % in the case of rehydration rate and Brix, respectively. Overall, the R<sup>2</sup> value was computed 0.863 which is reasonable for the quality assessment of kiwifruit dried by the VFD system.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 245-259"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning enabled assessment of the vacuum freeze-drying of the kiwifruit\",\"authors\":\"Uzair Sajjad , Farzana Bibi , Imtiyaz Hussain , Naseem Abbas , Muhammad Sultan , Hafiz Muhammad Asfahan , Muhammad Aleem , Wei-Mon Yan\",\"doi\":\"10.1016/j.inpa.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drying technologies have been essential for extending the shelf-life of perishable fruits and vegetables for over a century. Vacuum freeze-drying (VFD), though invented over a hundred years ago, remains one of the most advanced drying techniques, known for sustainably drying perishable products while maintaining quality indices and morphological properties comparable to their fresh state. The performance of the VFD system is sensitive to the operating conditions and features of the drying product which is assessed using experimental and/or numerical methods. However, the qualitative aspects of the dried product are not predictable. In this context, the present study aims to create a deep neural framework (DNF) that predicts the performance of a Vacuum Freeze Drying (VFD) system for kiwifruit, based on its morphology and nutritional value under varying conditions. This involves translating the fruit’s morphological features into trainable data and using a Generative Adversarial Network (GAN) to create diverse, unlabeled datasets. The framework is optimized using Gaussian Process (GP) for hyper-parameter tuning, focusing on minimizing errors like mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The maximum MSE of 1.243 is found in the prediction of rehydration rate, followed by color (0.725), energy consumption (0.426), moisture content (0.379), texture (0.320), sensory (0.250), and Brix (0.215), respectively. The maximum MAE and MAPE values are recorded 0.833 and 32.99 % while the minimum is observed 0.368 and 7.019 % in the case of rehydration rate and Brix, respectively. Overall, the R<sup>2</sup> value was computed 0.863 which is reasonable for the quality assessment of kiwifruit dried by the VFD system.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 2\",\"pages\":\"Pages 245-259\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine learning enabled assessment of the vacuum freeze-drying of the kiwifruit
Drying technologies have been essential for extending the shelf-life of perishable fruits and vegetables for over a century. Vacuum freeze-drying (VFD), though invented over a hundred years ago, remains one of the most advanced drying techniques, known for sustainably drying perishable products while maintaining quality indices and morphological properties comparable to their fresh state. The performance of the VFD system is sensitive to the operating conditions and features of the drying product which is assessed using experimental and/or numerical methods. However, the qualitative aspects of the dried product are not predictable. In this context, the present study aims to create a deep neural framework (DNF) that predicts the performance of a Vacuum Freeze Drying (VFD) system for kiwifruit, based on its morphology and nutritional value under varying conditions. This involves translating the fruit’s morphological features into trainable data and using a Generative Adversarial Network (GAN) to create diverse, unlabeled datasets. The framework is optimized using Gaussian Process (GP) for hyper-parameter tuning, focusing on minimizing errors like mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The maximum MSE of 1.243 is found in the prediction of rehydration rate, followed by color (0.725), energy consumption (0.426), moisture content (0.379), texture (0.320), sensory (0.250), and Brix (0.215), respectively. The maximum MAE and MAPE values are recorded 0.833 and 32.99 % while the minimum is observed 0.368 and 7.019 % in the case of rehydration rate and Brix, respectively. Overall, the R2 value was computed 0.863 which is reasonable for the quality assessment of kiwifruit dried by the VFD system.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining