{"title":"基于分层EMD阶段特征的决策树方法对水稻病虫害和营养缺乏症进行分类鉴定","authors":"A. Pushpa Athisaya Sakila Rani , N. Suresh Singh","doi":"10.1016/j.inpa.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>Pest attack, disease incidence, and nutrient deficiency are the major factors limiting the yield of paddy. Therefore, the paper proposes a classification system for the identification of pest, disease, and nutrient deficiency classes. This approach initially preprocesses leaf images using entropy filtering followed by a leaf segmentation process. Multiple layers are then constructed on the leaf image through which features are extracted. The Gray Level Co-occurrence Matrix (GLCM) algorithm and Principal Component Analysis (PCA) are used to extract the global texture features of the leaf image. A 1D-signal sequence is constructed on each layer, which is decomposed by the Empirical Mode Decomposition algorithm from which the phase features are estimated. The features are trained/classified using the decision tree classifiers that classify the pest attack, disease incidence, and nutrient deficiency categories. The proposed approach provides a precision, accuracy, specificity, sensitivity, and F1-score of 97 %, 97.88 %, 96.52 %, 96.7 %, and 96.7 % respectively.</div></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"12 2","pages":"Pages 232-244"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and identification of pest, diseases and nutrient deficiency in paddy using layer based EMD phase features with decision tree\",\"authors\":\"A. Pushpa Athisaya Sakila Rani , N. Suresh Singh\",\"doi\":\"10.1016/j.inpa.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pest attack, disease incidence, and nutrient deficiency are the major factors limiting the yield of paddy. Therefore, the paper proposes a classification system for the identification of pest, disease, and nutrient deficiency classes. This approach initially preprocesses leaf images using entropy filtering followed by a leaf segmentation process. Multiple layers are then constructed on the leaf image through which features are extracted. The Gray Level Co-occurrence Matrix (GLCM) algorithm and Principal Component Analysis (PCA) are used to extract the global texture features of the leaf image. A 1D-signal sequence is constructed on each layer, which is decomposed by the Empirical Mode Decomposition algorithm from which the phase features are estimated. The features are trained/classified using the decision tree classifiers that classify the pest attack, disease incidence, and nutrient deficiency categories. The proposed approach provides a precision, accuracy, specificity, sensitivity, and F1-score of 97 %, 97.88 %, 96.52 %, 96.7 %, and 96.7 % respectively.</div></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"12 2\",\"pages\":\"Pages 232-244\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317324000647\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317324000647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Classification and identification of pest, diseases and nutrient deficiency in paddy using layer based EMD phase features with decision tree
Pest attack, disease incidence, and nutrient deficiency are the major factors limiting the yield of paddy. Therefore, the paper proposes a classification system for the identification of pest, disease, and nutrient deficiency classes. This approach initially preprocesses leaf images using entropy filtering followed by a leaf segmentation process. Multiple layers are then constructed on the leaf image through which features are extracted. The Gray Level Co-occurrence Matrix (GLCM) algorithm and Principal Component Analysis (PCA) are used to extract the global texture features of the leaf image. A 1D-signal sequence is constructed on each layer, which is decomposed by the Empirical Mode Decomposition algorithm from which the phase features are estimated. The features are trained/classified using the decision tree classifiers that classify the pest attack, disease incidence, and nutrient deficiency categories. The proposed approach provides a precision, accuracy, specificity, sensitivity, and F1-score of 97 %, 97.88 %, 96.52 %, 96.7 %, and 96.7 % respectively.
期刊介绍:
Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining