强化内嵌电场和富集钴掺杂ZnSn(OH)6/ZnWO4异质结活性位点促进CO2光催化还原

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
YiKai Wang , Chenchen Xing , Yujia Liu , Ting Liang , Yi Liu , Xinqiu Tan , Yan Huang , Zebin Yu , Zuofang Yao , Yanping Hou
{"title":"强化内嵌电场和富集钴掺杂ZnSn(OH)6/ZnWO4异质结活性位点促进CO2光催化还原","authors":"YiKai Wang ,&nbsp;Chenchen Xing ,&nbsp;Yujia Liu ,&nbsp;Ting Liang ,&nbsp;Yi Liu ,&nbsp;Xinqiu Tan ,&nbsp;Yan Huang ,&nbsp;Zebin Yu ,&nbsp;Zuofang Yao ,&nbsp;Yanping Hou","doi":"10.1016/j.jcis.2025.137950","DOIUrl":null,"url":null,"abstract":"<div><div>The photocatalytic activity of photocatalysts is often limited by rapid recombination of photo-induced electron-hole pairs, insufficient active sites and slow reaction kinetics. In this study, the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunctions with oxygen vacancies and Lewis basic sites were synthesized for efficient photocatalytic CO<sub>2</sub> reduction. The Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> exhibited superior photoelectrochemical properties to the ZnSn(OH)<sub>6</sub> and ZnWO<sub>4</sub>. Results of kelvin probe force microscopy (KPFM) and electron density difference calculations demonstrated that Co doping induced lattice distortion in ZnSn(OH)<sub>6</sub>, generating a local electric field, which, in synergy with oxygen vacancies in ZnWO<sub>4</sub>, further enhanced the built-in electric field (IEF) within the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunction, significantly accelerating carriers separation. Density functional theory (DFT) calculation also revealed that the Lewis basicity of ZnSn(OH)<sub>6</sub> and oxygen vacancies in ZnWO<sub>4</sub> enhanced CO<sub>2</sub> adsorption on the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunction, facilitating CO<sub>2</sub> conversion. The Co-ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub>-V<sub>O</sub> composite exhibited the highest CO production rate (90.18 μmol·g<sup>−1</sup>·h<sup>−1</sup>) during CO<sub>2</sub> reduction, which was 25.47 and 1.28 times of those of ZnSn(OH)<sub>6</sub> and Co-ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub>, respectively. The main reaction intermediates were identified and CO<sub>2</sub> reduction mechanism was proposed. This work provides reference to improve photocatalytic activity by enhancing IEF and increasing active sites in heterojunctions.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137950"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strengthening built-in electric field and enriching active sites on cobalt-doped ZnSn(OH)6/ZnWO4 heterojunction to promote photocatalytic reduction of CO2\",\"authors\":\"YiKai Wang ,&nbsp;Chenchen Xing ,&nbsp;Yujia Liu ,&nbsp;Ting Liang ,&nbsp;Yi Liu ,&nbsp;Xinqiu Tan ,&nbsp;Yan Huang ,&nbsp;Zebin Yu ,&nbsp;Zuofang Yao ,&nbsp;Yanping Hou\",\"doi\":\"10.1016/j.jcis.2025.137950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The photocatalytic activity of photocatalysts is often limited by rapid recombination of photo-induced electron-hole pairs, insufficient active sites and slow reaction kinetics. In this study, the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunctions with oxygen vacancies and Lewis basic sites were synthesized for efficient photocatalytic CO<sub>2</sub> reduction. The Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> exhibited superior photoelectrochemical properties to the ZnSn(OH)<sub>6</sub> and ZnWO<sub>4</sub>. Results of kelvin probe force microscopy (KPFM) and electron density difference calculations demonstrated that Co doping induced lattice distortion in ZnSn(OH)<sub>6</sub>, generating a local electric field, which, in synergy with oxygen vacancies in ZnWO<sub>4</sub>, further enhanced the built-in electric field (IEF) within the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunction, significantly accelerating carriers separation. Density functional theory (DFT) calculation also revealed that the Lewis basicity of ZnSn(OH)<sub>6</sub> and oxygen vacancies in ZnWO<sub>4</sub> enhanced CO<sub>2</sub> adsorption on the Co-doped ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub> heterojunction, facilitating CO<sub>2</sub> conversion. The Co-ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub>-V<sub>O</sub> composite exhibited the highest CO production rate (90.18 μmol·g<sup>−1</sup>·h<sup>−1</sup>) during CO<sub>2</sub> reduction, which was 25.47 and 1.28 times of those of ZnSn(OH)<sub>6</sub> and Co-ZnSn(OH)<sub>6</sub>/ZnWO<sub>4</sub>, respectively. The main reaction intermediates were identified and CO<sub>2</sub> reduction mechanism was proposed. This work provides reference to improve photocatalytic activity by enhancing IEF and increasing active sites in heterojunctions.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137950\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013414\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013414","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化剂的光催化活性经常受到光诱导电子-空穴对快速重组、活性位点不足和反应动力学缓慢等因素的限制。在本研究中,合成了具有氧空位和路易斯碱位的共掺杂ZnSn(OH)6/ZnWO4异质结,用于有效的光催化CO2还原。共掺杂ZnSn(OH)6/ZnWO4的光电性能优于ZnSn(OH)6和ZnWO4。开尔文探针力显微镜(KPFM)和电子密度差计算结果表明,Co掺杂引起ZnSn(OH)6晶格畸变,产生局部电场,与ZnWO4中的氧空位协同作用,进一步增强了共掺杂ZnSn(OH)6/ZnWO4异质结内的内置电场(IEF),显著加速载流子分离。密度泛函理论(DFT)计算还表明,ZnWO4中的氧空位和ZnSn(OH)6的Lewis碱度增强了co在共掺杂ZnSn(OH)6/ZnWO4异质结上的吸附,促进了co的转化。CO -ZnSn(OH)6/ZnWO4- vo复合材料在CO2还原过程中CO产率最高(90.18 μmol·g−1·h−1),分别是ZnSn(OH)6和CO -ZnSn(OH)6/ZnWO4的25.47和1.28倍。确定了反应的主要中间体,并提出了CO2还原机理。本研究为通过增强IEF和增加异质结活性位点来提高光催化活性提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strengthening built-in electric field and enriching active sites on cobalt-doped ZnSn(OH)6/ZnWO4 heterojunction to promote photocatalytic reduction of CO2
The photocatalytic activity of photocatalysts is often limited by rapid recombination of photo-induced electron-hole pairs, insufficient active sites and slow reaction kinetics. In this study, the Co-doped ZnSn(OH)6/ZnWO4 heterojunctions with oxygen vacancies and Lewis basic sites were synthesized for efficient photocatalytic CO2 reduction. The Co-doped ZnSn(OH)6/ZnWO4 exhibited superior photoelectrochemical properties to the ZnSn(OH)6 and ZnWO4. Results of kelvin probe force microscopy (KPFM) and electron density difference calculations demonstrated that Co doping induced lattice distortion in ZnSn(OH)6, generating a local electric field, which, in synergy with oxygen vacancies in ZnWO4, further enhanced the built-in electric field (IEF) within the Co-doped ZnSn(OH)6/ZnWO4 heterojunction, significantly accelerating carriers separation. Density functional theory (DFT) calculation also revealed that the Lewis basicity of ZnSn(OH)6 and oxygen vacancies in ZnWO4 enhanced CO2 adsorption on the Co-doped ZnSn(OH)6/ZnWO4 heterojunction, facilitating CO2 conversion. The Co-ZnSn(OH)6/ZnWO4-VO composite exhibited the highest CO production rate (90.18 μmol·g−1·h−1) during CO2 reduction, which was 25.47 and 1.28 times of those of ZnSn(OH)6 and Co-ZnSn(OH)6/ZnWO4, respectively. The main reaction intermediates were identified and CO2 reduction mechanism was proposed. This work provides reference to improve photocatalytic activity by enhancing IEF and increasing active sites in heterojunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信