通过调节RNA和ClpXP蛋白酶的协调作用对细菌细胞分裂水解酶的温度依赖性调节

IF 6.2 Q1 Immunology and Microbiology
Viktor H. Mebus , Larissa M. Busch , Morten Børre , Tobias K. Nielsen , Martin Saxtorph Bojer , Camilla Henriksen , Maria D. Barbuti , Danae M. Angeles , Kamilla Brejndal , Stephan Michalik , Manuela Gesell Salazar , Morten Kjos , Uwe Völker , Birgitte H. Kallipolitis , Dorte Frees
{"title":"通过调节RNA和ClpXP蛋白酶的协调作用对细菌细胞分裂水解酶的温度依赖性调节","authors":"Viktor H. Mebus ,&nbsp;Larissa M. Busch ,&nbsp;Morten Børre ,&nbsp;Tobias K. Nielsen ,&nbsp;Martin Saxtorph Bojer ,&nbsp;Camilla Henriksen ,&nbsp;Maria D. Barbuti ,&nbsp;Danae M. Angeles ,&nbsp;Kamilla Brejndal ,&nbsp;Stephan Michalik ,&nbsp;Manuela Gesell Salazar ,&nbsp;Morten Kjos ,&nbsp;Uwe Völker ,&nbsp;Birgitte H. Kallipolitis ,&nbsp;Dorte Frees","doi":"10.1016/j.tcsw.2025.100144","DOIUrl":null,"url":null,"abstract":"<div><div>A defining feature of bacteria is the peptidoglycan cell wall which provides structural integrity and prevents osmotic lysis. While peptidoglycan hydrolases are required for daughter cell separation, dysregulated cell wall degradation may result in cell lysis. The mechanisms allowing bacteria to control these deadly enzymes in response to environmental changes remain incompletely understood. Here, we find that in <em>Staphylococcus aureus</em>, temperature-dependent regulation of such hydrolases occurs by the coordinated action of a CHAP domain-specific regulatory RNA and the ClpXP protease. Using a proteomics approach, we identify a hitherto uncharacterized <u>C</u>lp<u>X</u>P <u>c</u>ontrolled <u>a</u>utolysin, CxcA, with a catalytic CHAP domain and show that it contributes to separation of daughter cells. CxcA is positively controlled by a non-coding RNA, named Rbc1 (for RNA <u>b</u>inding to CHAP domain) transcribed from the antisense strand of <em>cxcA</em>. Notably, Rbc1 is capable of base pairing with RNAs encoding the CHAP domains of numerous cell wall hydrolases and we show that Rbc1 works <em>in trans</em> to upregulate the cell division hydrolase Sle1. Specifically, Rbc1 functions as a thermosensor allowing for upregulation of CxcA and Sle1 at low temperature where daughter cell separation is impeded. Interestingly, the Rbc1-mediated up-regulation of CxcA and Sle1 does not involve mRNA stabilization or increased translation; instead, Rbc1 depletion increases ClpXP-mediated degradation. In conclusion, we identify a novel cell division hydrolase that is highly conserved in Staphylococci and show that it is co-regulated with enzymes containing the catalytic CHAP domain via transcriptional regulation, an RNA-RNA temperature sensory mechanism and the ClpXP protease.</div></div>","PeriodicalId":36539,"journal":{"name":"Cell Surface","volume":"13 ","pages":"Article 100144"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-dependent regulation of bacterial cell division hydrolases by the coordinated action of a regulatory RNA and the ClpXP protease\",\"authors\":\"Viktor H. Mebus ,&nbsp;Larissa M. Busch ,&nbsp;Morten Børre ,&nbsp;Tobias K. Nielsen ,&nbsp;Martin Saxtorph Bojer ,&nbsp;Camilla Henriksen ,&nbsp;Maria D. Barbuti ,&nbsp;Danae M. Angeles ,&nbsp;Kamilla Brejndal ,&nbsp;Stephan Michalik ,&nbsp;Manuela Gesell Salazar ,&nbsp;Morten Kjos ,&nbsp;Uwe Völker ,&nbsp;Birgitte H. Kallipolitis ,&nbsp;Dorte Frees\",\"doi\":\"10.1016/j.tcsw.2025.100144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A defining feature of bacteria is the peptidoglycan cell wall which provides structural integrity and prevents osmotic lysis. While peptidoglycan hydrolases are required for daughter cell separation, dysregulated cell wall degradation may result in cell lysis. The mechanisms allowing bacteria to control these deadly enzymes in response to environmental changes remain incompletely understood. Here, we find that in <em>Staphylococcus aureus</em>, temperature-dependent regulation of such hydrolases occurs by the coordinated action of a CHAP domain-specific regulatory RNA and the ClpXP protease. Using a proteomics approach, we identify a hitherto uncharacterized <u>C</u>lp<u>X</u>P <u>c</u>ontrolled <u>a</u>utolysin, CxcA, with a catalytic CHAP domain and show that it contributes to separation of daughter cells. CxcA is positively controlled by a non-coding RNA, named Rbc1 (for RNA <u>b</u>inding to CHAP domain) transcribed from the antisense strand of <em>cxcA</em>. Notably, Rbc1 is capable of base pairing with RNAs encoding the CHAP domains of numerous cell wall hydrolases and we show that Rbc1 works <em>in trans</em> to upregulate the cell division hydrolase Sle1. Specifically, Rbc1 functions as a thermosensor allowing for upregulation of CxcA and Sle1 at low temperature where daughter cell separation is impeded. Interestingly, the Rbc1-mediated up-regulation of CxcA and Sle1 does not involve mRNA stabilization or increased translation; instead, Rbc1 depletion increases ClpXP-mediated degradation. In conclusion, we identify a novel cell division hydrolase that is highly conserved in Staphylococci and show that it is co-regulated with enzymes containing the catalytic CHAP domain via transcriptional regulation, an RNA-RNA temperature sensory mechanism and the ClpXP protease.</div></div>\",\"PeriodicalId\":36539,\"journal\":{\"name\":\"Cell Surface\",\"volume\":\"13 \",\"pages\":\"Article 100144\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Surface\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468233025000040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Surface","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468233025000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

细菌的一个决定性特征是肽聚糖细胞壁,它提供结构完整性并防止渗透裂解。虽然子细胞分离需要肽聚糖水解酶,但细胞壁降解失调可能导致细胞裂解。细菌控制这些致命酶以应对环境变化的机制尚不完全清楚。在这里,我们发现在金黄色葡萄球菌中,这种水解酶的温度依赖性调节是通过CHAP结构域特异性调节RNA和ClpXP蛋白酶的协调作用发生的。利用蛋白质组学方法,我们鉴定了一种迄今未被表征的ClpXP控制的自溶素CxcA,它具有催化CHAP结构域,并表明它有助于子细胞的分离。从CxcA的反义链转录的一种名为Rbc1 (RNA binding to CHAP domain)的非编码RNA正向控制着CxcA。值得注意的是,Rbc1能够与编码许多细胞壁水解酶的CHAP结构域的rna进行碱基匹配,我们发现Rbc1通过反式表达上调细胞分裂水解酶Sle1。具体来说,Rbc1作为一种热传感器,允许在子细胞分离受阻的低温下上调CxcA和Sle1。有趣的是,rbc1介导的CxcA和Sle1的上调不涉及mRNA稳定或翻译增加;相反,Rbc1缺失增加了clpxp介导的降解。总之,我们鉴定了一种在葡萄球菌中高度保守的新型细胞分裂水解酶,并表明它通过转录调控、RNA-RNA温度感觉机制和ClpXP蛋白酶与含有催化CHAP结构域的酶共同调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temperature-dependent regulation of bacterial cell division hydrolases by the coordinated action of a regulatory RNA and the ClpXP protease
A defining feature of bacteria is the peptidoglycan cell wall which provides structural integrity and prevents osmotic lysis. While peptidoglycan hydrolases are required for daughter cell separation, dysregulated cell wall degradation may result in cell lysis. The mechanisms allowing bacteria to control these deadly enzymes in response to environmental changes remain incompletely understood. Here, we find that in Staphylococcus aureus, temperature-dependent regulation of such hydrolases occurs by the coordinated action of a CHAP domain-specific regulatory RNA and the ClpXP protease. Using a proteomics approach, we identify a hitherto uncharacterized ClpXP controlled autolysin, CxcA, with a catalytic CHAP domain and show that it contributes to separation of daughter cells. CxcA is positively controlled by a non-coding RNA, named Rbc1 (for RNA binding to CHAP domain) transcribed from the antisense strand of cxcA. Notably, Rbc1 is capable of base pairing with RNAs encoding the CHAP domains of numerous cell wall hydrolases and we show that Rbc1 works in trans to upregulate the cell division hydrolase Sle1. Specifically, Rbc1 functions as a thermosensor allowing for upregulation of CxcA and Sle1 at low temperature where daughter cell separation is impeded. Interestingly, the Rbc1-mediated up-regulation of CxcA and Sle1 does not involve mRNA stabilization or increased translation; instead, Rbc1 depletion increases ClpXP-mediated degradation. In conclusion, we identify a novel cell division hydrolase that is highly conserved in Staphylococci and show that it is co-regulated with enzymes containing the catalytic CHAP domain via transcriptional regulation, an RNA-RNA temperature sensory mechanism and the ClpXP protease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Surface
Cell Surface Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
6.10
自引率
0.00%
发文量
18
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信