{"title":"Lu3Ga3MgSiO12:Cr3+, Yb3+石榴石荧光粉的超宽带近红外发射和通过化学单元共取代和能量转移增强的热稳定性","authors":"Tongshu Zhang, Yuheng Zhang, Fulong Hao, Huidong Xie, Zhihua Leng, Zuobin Tang","doi":"10.1016/j.jcis.2025.137933","DOIUrl":null,"url":null,"abstract":"<div><div>The development of highly efficient and thermally stable phosphors with ultra-broadband emission is critical to advancing the practical applications of portable near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs). Herein, we employ the chemical unit co-substitution strategy to quantitatively introduce Mg<sup>2+</sup> and Si<sup>4+</sup> ions into the garnet lattice, yielding the high-performance Lu<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:Cr<sup>3+</sup> (LGMSO:Cr<sup>3+</sup>) phosphor, which exhibits an ultra-broadband emission with a full width at half maximum (FWHM) of 181 nm and a photoluminescence quantum yield (PLQY) of 63.7 %. Structural analysis reveals that Mg<sup>2+</sup>-Si<sup>4+</sup> co-substitution induces multiple Cr<sup>3+</sup> occupancy within distorted (Ga/Mg)O<sub>6</sub> octahedra, broadening emission band via a multisite-induced effect, as confirmed by low-temperature spectral analysis (80 K) and crystal field calculations. Furthermore, co-doping with Yb<sup>3+</sup> enhances the emission bandwidth and thermal stability (from 48.4 % to 71.0 % at 423 K), attributed to the combined contributions of Cr<sup>3+</sup> emission (<span><math><mrow><msub><mrow><msup><mrow><mspace></mspace></mrow><mn>4</mn></msup><mi>T</mi></mrow><mn>2</mn></msub><mrow><mo>(</mo><msup><mrow><mspace></mspace></mrow><mn>4</mn></msup><mi>F</mi><mo>)</mo></mrow><msup><mo>→</mo><mn>4</mn></msup><msub><mi>A</mi><mn>2</mn></msub></mrow></math></span>) and Yb<sup>3+</sup> emission (<span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>2</mn></msup><msub><mi>F</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mo>→</mo><mn>2</mn></msup><msub><mi>F</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>) excited via Cr<sup>3+</sup> energy transfer. Packaged LED devices show superior night vision and non-destructive biological penetration capabilities, highlighting the phosphor’s potential for NIR pc-LED applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137933"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband near-infrared emission and enhanced thermal stability in Lu3Ga3MgSiO12:Cr3+, Yb3+ garnet phosphor via chemical unit co-substitution and energy transfer\",\"authors\":\"Tongshu Zhang, Yuheng Zhang, Fulong Hao, Huidong Xie, Zhihua Leng, Zuobin Tang\",\"doi\":\"10.1016/j.jcis.2025.137933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of highly efficient and thermally stable phosphors with ultra-broadband emission is critical to advancing the practical applications of portable near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs). Herein, we employ the chemical unit co-substitution strategy to quantitatively introduce Mg<sup>2+</sup> and Si<sup>4+</sup> ions into the garnet lattice, yielding the high-performance Lu<sub>3</sub>Ga<sub>3</sub>MgSiO<sub>12</sub>:Cr<sup>3+</sup> (LGMSO:Cr<sup>3+</sup>) phosphor, which exhibits an ultra-broadband emission with a full width at half maximum (FWHM) of 181 nm and a photoluminescence quantum yield (PLQY) of 63.7 %. Structural analysis reveals that Mg<sup>2+</sup>-Si<sup>4+</sup> co-substitution induces multiple Cr<sup>3+</sup> occupancy within distorted (Ga/Mg)O<sub>6</sub> octahedra, broadening emission band via a multisite-induced effect, as confirmed by low-temperature spectral analysis (80 K) and crystal field calculations. Furthermore, co-doping with Yb<sup>3+</sup> enhances the emission bandwidth and thermal stability (from 48.4 % to 71.0 % at 423 K), attributed to the combined contributions of Cr<sup>3+</sup> emission (<span><math><mrow><msub><mrow><msup><mrow><mspace></mspace></mrow><mn>4</mn></msup><mi>T</mi></mrow><mn>2</mn></msub><mrow><mo>(</mo><msup><mrow><mspace></mspace></mrow><mn>4</mn></msup><mi>F</mi><mo>)</mo></mrow><msup><mo>→</mo><mn>4</mn></msup><msub><mi>A</mi><mn>2</mn></msub></mrow></math></span>) and Yb<sup>3+</sup> emission (<span><math><mrow><msup><mrow><mspace></mspace></mrow><mn>2</mn></msup><msub><mi>F</mi><mrow><mn>5</mn><mo>/</mo><mn>2</mn></mrow></msub><msup><mo>→</mo><mn>2</mn></msup><msub><mi>F</mi><mrow><mn>7</mn><mo>/</mo><mn>2</mn></mrow></msub></mrow></math></span>) excited via Cr<sup>3+</sup> energy transfer. Packaged LED devices show superior night vision and non-destructive biological penetration capabilities, highlighting the phosphor’s potential for NIR pc-LED applications.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":\"697 \",\"pages\":\"Article 137933\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979725013244\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013244","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultra-broadband near-infrared emission and enhanced thermal stability in Lu3Ga3MgSiO12:Cr3+, Yb3+ garnet phosphor via chemical unit co-substitution and energy transfer
The development of highly efficient and thermally stable phosphors with ultra-broadband emission is critical to advancing the practical applications of portable near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs). Herein, we employ the chemical unit co-substitution strategy to quantitatively introduce Mg2+ and Si4+ ions into the garnet lattice, yielding the high-performance Lu3Ga3MgSiO12:Cr3+ (LGMSO:Cr3+) phosphor, which exhibits an ultra-broadband emission with a full width at half maximum (FWHM) of 181 nm and a photoluminescence quantum yield (PLQY) of 63.7 %. Structural analysis reveals that Mg2+-Si4+ co-substitution induces multiple Cr3+ occupancy within distorted (Ga/Mg)O6 octahedra, broadening emission band via a multisite-induced effect, as confirmed by low-temperature spectral analysis (80 K) and crystal field calculations. Furthermore, co-doping with Yb3+ enhances the emission bandwidth and thermal stability (from 48.4 % to 71.0 % at 423 K), attributed to the combined contributions of Cr3+ emission () and Yb3+ emission () excited via Cr3+ energy transfer. Packaged LED devices show superior night vision and non-destructive biological penetration capabilities, highlighting the phosphor’s potential for NIR pc-LED applications.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies