SNN荧光探针检测Al3+和Zn2+的开启机制研究

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Siqi Wang , Jieyi Wang , Jiayi Cui , Wenbo Li , Yusheng Weng , Hongjing Liang , Hui Li , Guangyong Jin
{"title":"SNN荧光探针检测Al3+和Zn2+的开启机制研究","authors":"Siqi Wang ,&nbsp;Jieyi Wang ,&nbsp;Jiayi Cui ,&nbsp;Wenbo Li ,&nbsp;Yusheng Weng ,&nbsp;Hongjing Liang ,&nbsp;Hui Li ,&nbsp;Guangyong Jin","doi":"10.1016/j.comptc.2025.115291","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid detection of metal ions in organisms and the environment is crucial. A comprehensive understanding of sensing mechanisms is essential for developing efficient probes. We systematically investigate the dynamical process and luminescence properties of the SNN probe and its complexes using the time-dependent density functional theory (TD-DFT) methods. By analyzing the potential energy surface and Born-Oppenheimer molecular dynamics simulations, we found that the twisted intramolecular charge transfer (TICT) process in the excited state of the SNN molecule inhibits the excited-state intramolecular proton transfer (ESIPT) process, leading to fluorescence quenching. However, upon binding with Al<sup>3+</sup> or Zn<sup>2+</sup>, the molecular structural torsion is restricted, significantly enhancing fluorescence emission. Consequently, the complexes SNN-Zn<sup>2+</sup> and SNN-Al<sup>3+</sup> emit bright fluorescence. The computational results help elucidate how metal ions activate the luminescent properties of the probe and its response mechanism, providing valuable theoretical guidance and reference for the design and development of novel fluorescent probes.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1250 ","pages":"Article 115291"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the turn-on mechanism of SNN fluorescent probe for Al3+ and Zn2+ detection\",\"authors\":\"Siqi Wang ,&nbsp;Jieyi Wang ,&nbsp;Jiayi Cui ,&nbsp;Wenbo Li ,&nbsp;Yusheng Weng ,&nbsp;Hongjing Liang ,&nbsp;Hui Li ,&nbsp;Guangyong Jin\",\"doi\":\"10.1016/j.comptc.2025.115291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rapid detection of metal ions in organisms and the environment is crucial. A comprehensive understanding of sensing mechanisms is essential for developing efficient probes. We systematically investigate the dynamical process and luminescence properties of the SNN probe and its complexes using the time-dependent density functional theory (TD-DFT) methods. By analyzing the potential energy surface and Born-Oppenheimer molecular dynamics simulations, we found that the twisted intramolecular charge transfer (TICT) process in the excited state of the SNN molecule inhibits the excited-state intramolecular proton transfer (ESIPT) process, leading to fluorescence quenching. However, upon binding with Al<sup>3+</sup> or Zn<sup>2+</sup>, the molecular structural torsion is restricted, significantly enhancing fluorescence emission. Consequently, the complexes SNN-Zn<sup>2+</sup> and SNN-Al<sup>3+</sup> emit bright fluorescence. The computational results help elucidate how metal ions activate the luminescent properties of the probe and its response mechanism, providing valuable theoretical guidance and reference for the design and development of novel fluorescent probes.</div></div>\",\"PeriodicalId\":284,\"journal\":{\"name\":\"Computational and Theoretical Chemistry\",\"volume\":\"1250 \",\"pages\":\"Article 115291\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210271X25002270\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X25002270","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

快速检测生物和环境中的金属离子至关重要。对传感机制的全面了解是开发高效探针的必要条件。利用时间依赖密度泛函理论(TD-DFT)方法系统地研究了SNN探针及其配合物的动力学过程和发光特性。通过势能面分析和Born-Oppenheimer分子动力学模拟,我们发现SNN分子激发态的扭曲分子内电荷转移(TICT)过程抑制激发态分子内质子转移(ESIPT)过程,导致荧光猝灭。然而,与Al3+或Zn2+结合后,分子结构扭转受到限制,荧光发射明显增强。因此,配合物SNN-Zn2+和SNN-Al3+发出明亮的荧光。计算结果有助于阐明金属离子如何激活探针的发光特性及其响应机制,为新型荧光探针的设计和开发提供有价值的理论指导和参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into the turn-on mechanism of SNN fluorescent probe for Al3+ and Zn2+ detection
The rapid detection of metal ions in organisms and the environment is crucial. A comprehensive understanding of sensing mechanisms is essential for developing efficient probes. We systematically investigate the dynamical process and luminescence properties of the SNN probe and its complexes using the time-dependent density functional theory (TD-DFT) methods. By analyzing the potential energy surface and Born-Oppenheimer molecular dynamics simulations, we found that the twisted intramolecular charge transfer (TICT) process in the excited state of the SNN molecule inhibits the excited-state intramolecular proton transfer (ESIPT) process, leading to fluorescence quenching. However, upon binding with Al3+ or Zn2+, the molecular structural torsion is restricted, significantly enhancing fluorescence emission. Consequently, the complexes SNN-Zn2+ and SNN-Al3+ emit bright fluorescence. The computational results help elucidate how metal ions activate the luminescent properties of the probe and its response mechanism, providing valuable theoretical guidance and reference for the design and development of novel fluorescent probes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信